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From Optimal Interpolation to 3D-Var

X Previously in “Assimilation Algorithms”: linear analysis equation

Xa=Xp+ K|y — H(xp)]

where

. . —1
K=P°HT [HP’H+R] ' = [P+ H'RH| H'R™

X Optimal Interpolation (Ol) applies direct solution
methods to invert the matrix [HP’HT +R].

X Data selection is applied to reduce the dimension
of the matrix.

X Direct methods require access to the matrix
elements. In particular, HP’H' must be available
in matrix form.

X This limits us to very simple observation operators.
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From Optimal Interpolation to 3D-Var
X Linear analysis equation: X, = X, + K|y — # (xp)]
X For K= PPHT [HP?HT +R]

—1
we have X, = X, +P°H" [HP°H" +R] [ y — H(x») }

if z = [HP°H" +R] B [y—}[(xb)}

we have to solve [HP°H'+R] z = y— 7(x)

and then x, = x, + PPHT z

A
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From Optimal Interpolation to 3D-Var
X Linear analysis equation: X, = X, + K|y — # (xp)]
—1
X For K = [Pb_1 —|—HTR_1H} HTR

—1
we have X, = X, + [Pb_1 +H'R™! H] H'R™ ly — H(xp)]

1
if Sx — [Pb_1+HTR‘1H} H'R™ 'y — #H(xp)]
we have to solve [Pb_1+HTR_1H} Sx = H'R™'[y — #(xy)]

and then X; = X, + &x

A
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From Optimal Interpolation to 3D-Var

X There are two forms to solve the linear analysis equation, depending
which expression we adopt for K:

X For K=PP’H" [HP’H' +R| ~" we have x, = x,, + PPHT z and:

[HP°H'+R| z = y— % (xy)
1
X ForK = [Pb_1 +HTR_1H} HTR~' we have X, = X, + §x and:

P HTRTH| Sx = HTR™'[y— ()]

X The linear analysis equation could be solved as an equation of the form:
A X=Db.

X The first of these alternatives is called PSAS (Physical-space Statistical
Analysis System)

X The second (although it may not look like it yet) is 3D-Var

A
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From Optimal Interpolation to 3D-Var

Problem
X Find the solution x, of the linear system:

Ax=Db.

Direct methods
X Direct methods attempt to solve the problem by a finite sequence of

operations.
X In the absence of rounding errors, direct methods would deliver an exact
solution x, of the linear system.

lterative methods
X Beginning with an approximation to the solution Xxg, an iterative method is

a mathematical procedure that generates a sequence of improving
approximate solutions x4, Xo, - - - Xp.

X The n-th approximation is derived from the previous ones.
X The sequence of solutions converges to the exact solution.

H N
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From Optimal Interpolation to 3D-Var
lterative methods have significant advantages over the direct methods used in
Optimal Interpolation (Ol):

X They can be applied to much larger problems than direct techniques, so
we can avoid data selection.

X They do not require access to the matrix elements.

X Typically, to solve Ax = b, requires only the ability to calculate
matrix-vector products: AX.

X This allows us to use operators defined by pieces of code rather than
explicitly as matrices.

X Examples of such operators include radiative-transfer codes, numerical
models, Fourier transforms, etc.

A
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Example: Conjugate Gradients
To solve Ax = b, where A is real, symmetric and positive-definite:
ro:=b— AX, Po =Ty k:=0;
while r, ¢ is too large do

/* Step in the direction of pg */
I‘Tl‘k
Ol = —&
K™ prAp ’
/* New state */
Xk+1 1= Xk + 0Pk ;
/* New residual */
Feiq := P — OAPK ;
/* New direction of descent */
T
o 1Pk,
Bk T r};rk ’
Prt1 := Pkt + PPk ;
/* Next iteration */
K:=k+1;

end
The result is xy. 1

A
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3D-Var

X As we have seen, (linear) 3D-Var analysis can be seen as an application
of iterative solution methods to the linear analysis equation.

X Historically, 3D-Var was not developed this way.
X We will now consider this alternative derivation.
X We will need to apply Bayes’ theorem:

p(B|A)p(A)
p(B)

where p(A|B) is the probability of A given B, etc.

p(A|B) =

A
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Maximum Likelihood

X We developed the linear analysis equation by searching for a linear
combination of observation and background that minimised the variance of
the error.

X An alternative approach is to look for the most probable solution x, given
the observations Y and having a prior knowledge x; on the solution:

Xa = argmax [p(x]y) |
X It will be convenient to define a cost function
J(x) = —log [p(x]y)] + const.
X Then, since log is a monotonic function:

X, = argmin [J(x) |

X

A
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Maximum Likelihood
X Applying Bayes’ theorem gives:
p(y|x)p(x)
p(y)

X The maximum likelihood approach is applicable to any probability density
functions p(y|x) and p(x).

p(x|y) = o< p(y|x)p(x)

X However, let us consider the special case of Gaussian p.d.f’s:

1 1 T b1
P = s eP] —p(x %P (x x|

PYN) = oo { 3y 200] R [y~ 2000}

A
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Maximum Likelihood

X Gaussian p.d.f’s:
1 1 T b—1
PX) = Grprpoa P X X BT )

PYN) = mmrep | 1y — 2000 Ry - 9400 |

X Now,

J(x) = —log [p(x]y)] + const.
= —log [p(y|x)] — log [p(x)] + const

X Hence, with an appropriate choice of the constant const.:

J(0) = 5 (6 —x) PP (x—x0) + 2 [y — #(x)] "Ry — H(x)]

X This is the 3D-Var cost function

A
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Maximum Likelihood

X Let us introduce the dot product:
X1 7X2 ZX~| = X’1T Xo

X The dot product is symmetric:
<X17X2> <X27X1>
X Let us introduce the matrix A

(X1,AX2) = X{ AXo
= (ATX1)TX2
<ATX1,X2>

X Alis the adjoint of A:
<X1 ) Ax2> — <ATX1 ) x2>

X If A is symmetric (AT = A):
(X1,AX2) = (AXy,X2) = (X1,X2)A

A
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Maximum Likelihood

X The maximum likelihood analysis corresponds to the global minimum of
the cost function (using the previously defined dot product):

1 1

J(x) = §<x—xb, x—xb>Pb_1 +§<y—}[(x) : y—?{(x)>

X At the minimum Xx,, the gradient of the cost function is zero:

R—1

VJ(x)=0
X The Taylor series of the cost function is (at the first order)
J(x+0x) = J(x) + <6x, VJ(x)>

X Let introduce a perturbation 0x of x.
X If #H is linear (or if we neglect second-order terms) then

H(x+0x) = H(x)+Hox.

A
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Maximum Likelihood
X The cost function evaluated at x + ox is

’
J(x+0x) = §<(x—xb)+8x,(x—xb)+8x>Pb_1
;

+ 5 (v = #(x)) — Hox. (y — 7(x)) — Hox)

2 R—1

where we will neglect the second order terms (- - - dx, - - - 0x)

A
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Maximum Likelihood

X The cost function evaluated at x + ox is

1
J(x+0x) ~ —<X—Xb, X—Xb>Pb_1

2
+ %<x—xb,8x>Pb1+%<8X,X—Xb>Pb1
+ %<y—7{(><),y—?{(X)>R1
_ %<y—7—[(x), H35X>R_1 —%<H5X7V_7{(x)>n1
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Maximum Likelihood

X The cost function evaluated at x + ox is

1
J(x+0x) ~ §<x—xb,x—xb> -
P

1 5 /s
+ §<x—xb, X>Pb‘1+§< X’X_Xb>Pb_1

1

+ (Y= ),y —H(x))

1

Uyt ox) T (wox,y— 5(x))

R—1

R—1

A
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Maximum Likelihood

X The cost function evaluated at x + ox is

J(x + 0x)
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Maximum Likelihood

X The cost function evaluated at x + ox is

’
J(x+0x) ~ §<x—xb7 x—xb>Pb_1

1 1
+ §<x—xb, 63x>Pb_1 + §<8x, x—xb>Pb_1

1

+ (Y= Hx). y—H(x))

_ %<y— H(x), H8x>R_1 — %<H8x, y— }[(x)>

R—1

R—1
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Maximum Likelihood

X The cost function evaluated at x + ox is

’
J(x+0x) ~ §<x—xb, x—xb>Pb_1

1 5 /s
i §<x—xb, X>Pb_1+§< X’X_Xb>|=b_1

o (y—#(x),y -~ #(x))

1

R-1
Lty

J(x+0x) ~ J(x)

J
+ <6x, x—xb>Pb_1
<8x, HT[y—ﬂ{(x)D

R—1
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Maximum Likelihood

X The maximum likelihood analysis corresponds to the global minimum of
the cost function (using the previously defined dot product):

1 1

J(x) = §<x—xb, x—xb>Pb_1 +—<y—}[(x) : y—?{(x)>

2 R—1

X The cost function evaluated at x + 0x is (at the first order)
J(x+8x) = J(x) + (8%, P*" [x—xp] —RHT[y — 7(x)] ).
X The Taylor series of the cost function is (at the first order)
J(Xx+0x) = J(x)+ <8x, VJ(x)>
X We deduce the gradient of the cost function

VJ(x) =P [x—xp) +H'R'[#H(x) — y]

A
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Maximum Likelihood

X At the minimum x,, the gradient of the cost function (VJ(x)) is zero:
VJ(Xa) =P [xa—xp] + HTR™'[H(x2) —y] = 0
X Now, if # is linear (or if we neglect second-order terms) then
H(xz) = H(xp) +HOX, where Ox,=X,—X,

X Hence: 1
P° 8x,+H'R[#H(x,) —y] +H'R 'H8x, =0

X Rearranging a little gives:
{qu +HTR H] 5xa = H'R™ [y — H(x,)]

X This is exactly the equation for the minimum-variance analysis we derived
at the start of the lecture!

A
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Maximum Likelihood

X We have shown that the maximum likelihood approach is naturally
expressed in terms of a cost function representing minus the log of the
probability of the analysis state.

X The minimum of the cost function corresponds to the maximum likelihood
(probability) solution.

X For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution.

X This is not the case in general:

A
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Maximum Likelihood

X In the nonlinear case, the minimum variance approach is difficult to apply.

X The maximum-likelihood approach is much more generally applicable

X As long as we know the p.d.f’s, we can define the cost function
=~ However, finding the global minimum may not be easy for highly non-Gaussian
p.d.f’s.

X In practice, background errors are usually assumed to be Gaussian (or a
nonlinear transformation is applied to make them Gaussian).

= This makes the background-error term of the cost function quadratic.

X However, non-Gaussian observation errors are taken into account. For
example:
= Directionally-ambiguous wind observations from scatterometers
= QObservations contaminated by occasional gross errors, which make outliers much
more likely than implied by a Gaussian model.

A
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Minimisation
X In 3D-Var, the analysis is found by minimising the cost function:
1 —1 1 T _
J0) = 5 (x =) P (x—x5) + 5[y = H(x)] R [y — #(x)]

X This is a very large-scale (dim(x) = 10°) minimisation problem.
X The size of the problem restricts on the algorithms we can use.

X Derivative-free algorithms (which require only the ability to calculate J(x)
for arbitrary x) are too slow.

X This is because each function evaluation gives very limited information
about the shape of the cost function.
= E.g. afinite difference, J(x +8v) — J(x) ~ dv'VJ(x), gives a single component of
the gradient.
= We need O(10%) components to work out which direction is “downhill”.

A
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Minimisation
X Practical algorithms for minimising the 3D-Var cost function require us to
calculate its gradient:

VJ(x) =P (x—xp) +H'R™"[H(x) — ]

X The simplest gradient-based minimisation algorithm is called steepest

descent:
Let Xo be an initial guess of the analysis;

while gradient is not sufficiently small do

/* Define a descent direction */

dk = —VJ(XK),

/* Find a step Ok, e.g. Dby line minimisation of the
function J(xx+ady), for which J(xx+ody) < J(Xk) x/

/* Compute the new estimate */

X1 = X+ Odg;

/* Next step */

k=k+ 1
end
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Minimisation

X Steepest descent can work
well on problems in which the
iso-surfaces of the cost
function are nearly spherical.
< In this case, the steepest @
descent direction points
towards the minimum.

< They are very well conditioned
problems.

X For problems with ellipsoidal
iIso-surfaces, steepest
descent is not efficient.

= They are poorly conditioned
problems.

A
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Curvature

X We define the curvature as the amount by which a line deviates from being
straight.

X The degree of sphericity of the cost function can be measured by the
eigenvalues of the Hessian (matrix J” of second derivatives of J).

~ Each eigenvalue corresponds to the curvature in the direction of the corresponding
eigenvector.

A
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Preconditioning

X The steepest descent method works best if the iso-surfaces of the cost
function are approximately spherical.

X This is generally true of all minimisation algorithms.
X In particular, the convergence rate will depend on the condition number:

K . kmax
_ Y,
7‘~min
where Apax and Apin are the maximum and minimum eigenvalues

respectively.

X In general, expressing the cost function directly in terms of x will not lead
to spherical iso-surfaces.

A
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Preconditioning

X We can speed up the convergence of the minimisation by a change of
variables ¥ = L™'(x — X;), where L is chosen to make the cost function

more spherical.
X A common choiceis L = Pb1/2. The cost function becomes:

J0) = A"+ [y~ H ke L) Ry — H (L)

1 1 T
~ EXTX‘FE[V—.‘]‘[(X[))—FHLX} R [y—}[(xb)—l—HLx]
X With this change of variables, the Hessian becomes:

Jy =1+ L"H'"R™"HL (plus higher order terms)

X The presence of the identity matrix in this expression guarantees that the

minimum eigenvalue is > 1.
X There are no small eigenvalues to destroy the conditioning of the problem.

A
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Newton’s methods

X Steepest Descent is inefficient because it does not use information about
the curvature of the cost function.

X The simplest algorithms that use curvature are in the family of Newton’s
methods.

X Newton’s methods use a local quadratic approximation:
J(x+8x) ~ J(x) +8x'VJ(x) + %SXTJ/ '8x
X Taking the gradient gives:
VJ(x+8x) ~ VJ(x) + J"dx

X Since the gradient is zero at the minimum, Newton’s method chooses the
step at each iteration by solving:

J"0x = —VJ(x)

A
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Newton’s methods

X Newton’s method:
Start with an initial guess, Xo;

while gradient is not sufficiently small do

/* Solve J”BXK = —VJ(XK) */
Sxk = ..
/* Compute the new estimate */
Xk+1 = Xk + OXk;
/* Next step */
k=k+1

end

X Newton’s method works well for cost functions that are well approximated
by a quadratic — i.e. for quasi-linear observation operators.

X However, it suffers from several problems ...
= There is no control on the step length ||0x||.
~ The method can make huge jumps into regions where the local quadratic
approximation is poor.
X This can be controlled using line searches, or by trust region methods that

limit the step size to a region where the approximation is valid.
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Newton’s methods

X Newton’s method requires us to solve J"0x, = —VJ(x,) at every iteration.

X Now, J" is a ~ 10% x 10® matrix! Clearly, we cannot explicitly construct the
maitrix, or use direct methods to invert it.

X However, if we have a code that calculates Hessian-vector products, then
we can use an iterative method (e.g. conjugate gradients) to solve for 0x.

X Such a code is call a second order adjoint. See Wang, Navon, LeDimet,
Zou, 1992 Meteor. and Atmos. Phys. 50, pp3-20 for details.

X Alternatively, we can use a method that constructs an approximation to
()

X Methods based on approximations of J” or (J”) " are called quasi-Newton
methods.

A
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Newton’s methods

X By far the most popular quasi-Newton method is the BFGS algorithm,
named after its creators Broyden, Fletcher, Goldfarb and Shanno.

X The BFGS method builds up an approximation to the Hessian:

YV  BiSk (Bisi)'
YkSk skBsy

Bii1=Bx+

where sy = X1 1 — Xk and yx = VJ(Xk11) — VJ(Xk)-
X The approximation is symmetric and positive definite, and satisfies
VJ(x;1) —VJ(x;) =J"(xip1—x;))  forj=0,1,--- Kk

X There is an explicit expression for the inverse of By, which allows Newton'’s
equation to be solved at the cost of O(Nk) operations.

A
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Newton’s methods

X The BFGS quasi-Newton method:
Start with an initial guess, X ;
Start with an initial approximation of the Hessian (typically,By = 1);
while gradient is not sufficiently small do

/* Solve the approximate Newton’s equation,

B.Ox, = —VJ(x), to determine the search direction.
*/
oX) = -
/* Perform a line search to find a step Ok for which for
which J(Xk—l—OCkSXk) < J(Xk) */
(xk — e e ;
/* Compute the new estimate */

X1 = Xk + Ol OX;

/* Generate an updated approximation to the Hessian */
Biii="";

/* Next step */

k=k+ 1
end
sy
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Newton’s methods

The BFGS quasi-Newton method

X As k increases, the cost of storing and applying the approximate Hessian
increases linearly.

X Moreover, the vectors s, and y, generated many iterations ago no longer
provide accurate information about the Hessian.

X ltis usual to construct B, from only the O(10) most recent iterations.

X The algorithm is then called the limited memory BFGS method.

A
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Newton’s methods

X The methods presented so far apply to general nonlinear functions.

X An important special case occurs when the cost function is strictly
quadratic, and the gradient is linear:

VJ(x) = P?'8x+H'R™"[Hx, + Hx —y]
— [P+ HTRH| x+ HTR ' [Hx, — ]

X We will see tomorrow that ECMWF 4DVAR falls into this situation

X In this case, it makes sense to determine the analysis by solving the linear
equation VJ(x) = 0.

X Since the matrix {qu + HTR‘1H} is symmetric and positive definite, the

best algorithm to use is conjugate gradients. The algorithm was presented
earlier in this lecture.

X A good introduction to the conjugate gradient method can be found online:
Shewchuk (1994) “An Introduction to the Conjugate Gradient Method
Without the Agonizing pain”.

A
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ECMWEF Lanczos algorithm

X We precondition using L = Pb1/2, the gradient (with respect to ) is
Vid(X) =X +LH'R™ (y — #(xp) + HLY)

X We use the conjugate gardient to solve
I+L"H'RHL] x =L"H'R " [y — #(x)]

X This allows the hessian matrix to be approximated by

K
J' = H_Z(}\" _
i=1

where A; and v; are the eigenvalues and eigenvectors determined by the
congugate gradient and the Lanczos algorithm

X We can use as a new preconditioning

// 1/2_|+Z< 1/2 ) VI-T

A
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Calculating the operators

X We use the conjugate gardient to solve
I+L"H'RHL] x =L"H'R™" |y — H(x)]

X Typically, R is diagonal — observation errors are treated as being mutually
uncorrelated.

X However, the matrices H', LT and L are not diagonal, and are much too
large to be represented explicitly.

X We must represent these as operators (subroutines) that calculate
matrix-vector products.

A
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Calculating the operators

X Take # as an example. Each line of the subroutine that applies # can be
considered as a function hy, so that

H(x) = hg (-1 (--- ((x))))

X Each of the functions hy can be linearised, to give the corresponding linear
function hy. The resulting code is called the tangent linear of 4.

Hx = hKhK_1 cee h1X
X The transpose is called the adjoint of A
H'x=hih}---hyx
X Each h, and h} is extremely simple — just to a few lines of code.

Tangent Linear and Adjoints

There is a whole 1-hour lecture on tangent linear and adjoint operators
Tuesday when you will learn to derive tangent linear and adjoint equations for a
simple nonlinear equation.

A
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Summary

X We showed that 3D-Var can be considered as an iterative procedure for
solving the linear (minimum variance) analysis equation.

X We also derived 3D-Var from the maximum likelihood principle.

X The Maximum Likelihood approach can be applied to non-Gaussian,
nonlinear analysis.

X We introduced the 3D-Var cost function.

X We considered how to minimise the cost function using algorithms based
on knowledge of its gradient.

X We looked at a simple preconditioning.

X Finally, we saw how it is possible to write code that computes the gradient.

A
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