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Overview of lecture

* Some jargon/definitions

* Review of some in-situ and actively sensed observations in global NWP
» How we assimilate the data, recent developments

* Quality control (briefly!)

» What we (try to) do when the actual observation errors are not what we
expect or assume, given the assumed covariance matrices R

e Broad scope for lecture. Hopefully, it will “signpost” you to useful material.
Plus, | can point you to the ECMWF experts
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We combine a diverse set of observations with an NWP forecast in a statistically optimal (e.g., 3D-Var,
4D-Var, ...) way to produce the “analysis”

This "analysis” is the initial conditions for the next forecast

We will be discussing a subset of the observations in 0 "} used here at ECMWF to produce the analysis



Useful data assimilation jargon

The analysis is the initial conditions needed for the NWP forecast model run
A previous forecast provides the background (or a prior) information to the analysis

Observation operators, H, enable observations and the model background to be
compared in “observation space”

In observation space, the differences we compute in the comparisons are called
departures or innovations — “o-b”

— They are central in providing observation information to the analysis

These corrections, or increments, are added to the background to give the analysis
(or posterior estimate)

Observation operators also enable a comparison of observations and the analysis
(analysis departures: “o0-a”

We'd expect abs(o-a)<abs(o-b) if the DA system is working correctly




Example: Statistics of departures
Background departures: y- HXx (0-b) y = observations

Xa = analysis state

Analysis departures: y- HX (o-a) > = background state
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* The standard deviation of background departures for both radiosondes and aircraft is

around 0.7-1.0 K in the mid-troposphere.

* The standard deviation of the analysis departures is smaller — because the analysis

has “drawn” to the observations.



WMO Integrated Global Observing System

The WMO OSCAR database provides an excellent overview of the observations
available

https://www.wmo-sat.info/oscar/

https://oscar.wmo.int/surface//index.html#/



https://oscar.wmo.int/surface/index.html

WMO OSCAR (Observing Systems Capability Analysis and Review Tool)

Quick access Welcome to OSCAR/Surface

Generate station report by: OSCAR/Surface is the World Meteorological Organization's official repository of WIGOS metadata for all surface-based observing stations and platforms. For more

‘ | details on OSCAR, please visit the About section. For additional information about WIGOS, visit the WIGOS Homepage.
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| Station name

| WIGOS Station Identifier

Generate station lists by:

| Country
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| Class

Observed variable

Find people by:

| Contact name

Filter map

By program / network:
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By reporting status:
© Declared Assessed

= air m land or ocean surface sub-surface m lake or river

| Reporting status . | @ Operational % Partly operational % Closed © Silent 2 Unknown
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By station type: Latest news

Station type 2025-03-12 Unscheduled maintenance on 17.03.2025

Due fo unscheduled maintenance the application will be shortly unavailable twice on Monday 17.03.2025 between
9:30 UTC and 16:30 UTC. Please postpone or make sure to save your changes often during this time to avoid

https://oscar.wmo.int/surface//index.htmi#/
https://www.wmo-sat.info/oscar/



https://oscar.wmo.int/surface/index.html

In-situ

e Somet i me sconvemtiohale”d
e Used since the very early days of NWP (1950
* Providing both surface and upper-air information. Most abundant in the NH

» Usually characterized by relatively simple forward operators, H, because the measured
guantities are geophysical (e.g.,, P, T,u,v,Q). Si mp | e, mesgyioen bimt t hey r
really a key component of global observing system!

» Also useful for forecast verification and they help constrain bias corrections applied to
satellite radiances

» See really important review by

— Pauley P, Ingleby B (2022) Assimilation of in -situ observations . In: Park SK, Xu L (eds) Data Assimilation for
Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer. Pages 293-371 in
https://link.springer.com/book/10.1007/978-3-030-77722-7



In-situ are roughly 10 % of the data we currently assimilate - but
they have a big impact despite their number

1-Feb-2025 to 28-Feb-2025

ops 1-Feb-2025 to 28-Feb-2025
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You will come across FSOI again later in the week

See diagnostics talk by Bruce Ingleby, March 19



In-situ data: which parameters are assimilated in atmosphere

analysis ?
SYNOP pressure, dew-point temperature, Station altitude, 2m
SHIP temperature, pressure, wind vector Ships ~25m
HBIAR Station altitude
BUOYS pressure, wind MSL, 2-10m
TEMP temperature, humidity, wind vector Profiles
TEMPSHIP
DROPSONDES
PROFILERS Wind vector Profiles
Aircraft temperature, wind vector, humidity Profiles near airports +

Flight level data



Geographical coverage

ECMWF data coverage (used observations) - SYNOP-SHIP-METAR
2025031221 to 2025031303
Total number of obs = 97033
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Editorial

The pace is quickening

News
Capturing extreme rainfall events
AIFS: a new ECMWEF forecasting system
ECMWEF meets its representatives in 2023

ECMWEF heating rates support PHILEAS
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How did ECMWF seasonal forecasts
perform for the European summer of
2023?

A daily forecast with the prototype global
Extremes Digital Twin of Destination
Earth
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T Improved two-metre temperature
forecasts in the 2024 upgrade

Bruce Ingleby, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta,
Kenta Ochi (Japan Meteorological Agency), Ewan Pinnington, Patricia de Rosnay

Two-metre temperature (T2m) is a key forecast variable. Here we describe how
changes to ECMWF's Integrated Forecasting System (IFS), which are expected to
become operational as part of IFS Cycle 49r1 in 2024, improve short-range forecasts of
T2m. Physics changes in IFS Cycle 49r1 will include extensive improvements to surface
vegetation fields and changes to make the interpolation of the temperature to 2 m
more realistic. There have also been major upgrades to the data assimilation system,
which establishes the initial conditions of forecasts (the ‘analysis’). Currently, T2m
('screen temperature’) and two-metre humidity (‘screen humidity’) from SYNOP
weather station reports and METAR aviation weather reports are assimilated in a
separate land surface analysis - primarily to update initial soil moisture and
temperature conditions. However, only daytime screen humidity is assimilated in the
atmospheric component of the data assimilation system, 4D-Var. In IFS Cycle 49r1,
T2m will be assimilated in 4D-Var. This proved beneficial after extensive
testing/tuning. Improvements in the separate snow data assimilation system as well
as in T2m and soil moisture land data assimilation are also applied. Overall this
results in better T2m forecasts, especially in northern hemisphere winter.

We recently improved our use of  synop /metar 2m temperatures in operations

https:// www.ecmwf.int /en/newsletter/178/earth -system -science/improved -two-metre-temperature -forecasts

@ Help

Anniversary

=] Login

-2024-upgrade



Geographical coverage Geographical coverage

ECMWF data coverage (used observations) - AIRCRAFT ECMWF data coverage (used observations) - BUOY
2025031221 to 2025031303 2025031221 to 2025031303
Total number of obs = 168140 Total number of obs = 1184
. L ) X Aaman paan) *  TAMDAR (1)
Aircraft 8 mo——— JR. v o Buoy o —n X wommemcore P
_ i e
e 3 A — = -
"u ?mﬁ"rrﬂ T r—
-w o > 4'—1' oN w.-.
'J. . tet
o auiNR_ / i = — - A
/ %, - .

et

H
R\
[y 7

L.
B~

",

H

]

- o -
L . . .
ws o s i3
I 7 I 1] ¢
] 2 D - .
= e ==
B aa i = R 3 - = =

Radiosonde o oo T et ¢ P, -

Dropsonde R - & mesmrorn
wind .
profilers g %?1 £ e B R i

. \\\ d; T N ,/V
s ENR A

Sy

Z - a/z - bl
- n N_N,Av,..._mﬁ.‘,.k_% - - I
i [ 0 R B g g s [ ]
—1 s —T T =
oW oW 6 wE C —

T ————— . ECMWF
S it -
i 5303 T2 sman ez Lo

e l— S ECMWF



Impact of various observing systems at ECMWF

Provided by Niels Bormann i 2021 annual seminar

< ECMWF


https://events.ecmwf.int/event/217/contributions/2049/attachments/1397/2509/AS2021_Bormann.pdf
https://events.ecmwf.int/event/217/contributions/2049/attachments/1397/2509/AS2021_Bormann.pdf

Observing system experiments — denying observation datasets

* Periods, 6 months in total:
5Sept i 2 Nov 2020
1Jan i 28 Feb 2021
1 May i 30June 2021
(each + 4 days spin-up prior)

» Denial experiments compared to a full system for:
- Conventional in-situ observations
- MW radiances
- IR sounders from LEO
- IR/VIS imagers (AMVs + IR radiances)
- GNSS-RO

* Resolution: Tco 399 (~25 km)
» Background error from operational system

< ECMWF



Forecast impact, day 2-8: 500 hPa geopotential

Verified against operational analyses, 3 periods combined
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Forecast impact, day 2-8: Total column water vapour

Verified against operational analyses, 3 periods combined
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Forecast impact, day 2-8: Wind at 850 hPa

Verified against operational analyses, 3 periods combined

g 4
SH, VW 850hPa Tropics, VW 850hPa NH, VW 850hPa
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Aircraft measurements of wind more important that temperature

(a) 12-hour forecasts 72-hour forecasts 120-hour forecasts
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Geophysical Research Letters, Volume: 48, Issue: 4, First
published: 06 December 2020, DOI: (10.1029/2020GL090699)



Aircraft measurements of wind more important that temperature

(a) 12-hour forecasts 72-hour forecasts 120-hour forecasts
ToITIT 1 1 - =
. gﬁ R Y ST [ T
%400 rJ’x HH 400 '_j } 4| 400 ot .
T 700 T 700 HE 23 700 ¥ g o
1000 1 EEEEEH 1000 3 5] 1000 o f E
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90 -90 -60 -30 0O 30 60 90
Latitude Latitude Latitude
]
-15 -10 -5 0 5 10 15
Difference in RMS error normalised by RMS error of control (%)
(b) (¢
5F 5 F
10 10
20 - 20 -
I 2T The short -range forecast fit to radiosondes
s or . B degrades (>10% == HUGE)
o - ’ o
i 150 : 150
2 200 | ' 200 .
£ 20 ; 250 &= b) TEMP c) wind vectors
300 + ] 300
400 : 400
issil : il The aircraft winds provide more information
850 | 850 H
ok : . =T . . than the aircraft temperatures
95 100 105 110 95 100 105 110 115
Normalised difference in standard deviation (%) Normalised difference in standard deviation (%)

NoAircraft

NoAircraftT 100% = Control

Geophysical Research Letters, Volume: 48, Issue: 4, First
published: 06 December 2020, DOI: (10.1029/2020GL090699)



Number of aircraft measurements used at ECMWF

MNumbers of reports per 24 hours (weekly average)

All AMDAR+ ———— Used AMDAR+ ———— Used Mode-5 ——— Used Gl Mode-5
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We can still improve the use of “established” observations, like radiosonde data:
BUFR radiosondes provide up to 8000 levels of measurements compared to less than

100 levels for TAC TEMP reports. A valuable improvement for data assimilation.
ASEUO04 ascent 2014 11 15 1039 UTC

TEMP 40 levels
BUFR 430 levels
ECMWF 12 hour forecast

100

Pressure (hPa)

1000

0 10 20 30 40 50 60 70

Wind speed (m s”) Bruce Ingleby, ECMWF
S ECMWF




Accounting for radiosonde drift in data assimilation
(we are improving the forward model Oand
reducing forward model error statistics, &)

* “Old style” radiosondes only provided the balloon launch location
* Native BUFR reports provides accurate location/time for each measurement

* The location/time information can be used to account for balloon drift in data assimilation

* We split the ascent into 15 minute chunks

* Was implemented at ECMWF in June 2018

* BUFR DROP (high-resolution dropsonde data was implemented at ECMWF in June 2019)

¢ In addition, descent data from BUFR radiosondes in Germany is now being used.

l aa
N ECMWF EUROPEAN CENTRE FOR MEDIUM -RANGE WEATHER FORECASTS




Example of large drift of radiosonde on a windy day
 Black diamonds — launch, , levels above 100 hPa

* BUFR data not available for all countries at the time of this figure (Nov 2016)

2016-11-21 12 radiosonde drift (15 minute intervals)
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Pressure [hPa]

Pressure [hPa]

Impact of accounting for radiosonde drift in data assimilation
Mean and rms o0-b statistics
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» Assimilated BUFR TEMP standard
levels only (to get clean comparison)

* Good improvements at 200 hPa and
above — including wind biases



We now use sonde data from descents as well as ascent!
April 2024: Drop/Descent
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Stratospheric seasonality
- work with U10 hPa @ 60°N, 60°.

* Different years plotted 1950 to 2021
» Data from ERAS5 (Hersbach et al, QJ, 2020)
» Winter: strong polar vortex

» SH vortex stable except when breaking
down in Austral spring

* In NH winter planetary waves disturb the
polar vortex

« Largest disturbances form stratospheric
sudden warmings (SSWs)

* In summer there are about 4 months when
nothing much happens — except a few gravity
waves

_c ECMWF EUROPEAN CENTRE FOR MEDIUM -RAN
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Sondes more important in winter but they tend to burst at a lower height

N Wlnterl ¢) 2018-2021: Radiosonde top pressure (median) by latitude

+ Seasonality in burst height is largest at hic
latitudes
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» Can see effect of larger balloon at Sodank
(blue dashed line) — selected months
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* Lower plot:

Alaska: 600 g balloons

d) 2018-2021: Radiosonde top pressure (median) by region, 50-90N
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* Question: Use bigger balloons in winter?’
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Some active satellite observation types

» If you are onthe NWP SAF training course, these observations are covered in much
more detail!

* More complicated forward operators, H. Global datasets

— GNSS Radio Occultation

Note that “ground-based GPS measurements” are different. They provides total column water information. Not covered here:
EG, see, Bennitt, G. V., and A. Jupp, 2012: Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office
Numerical Weather Prediction Models. Mon. Wea. Rev., 140, 2706—-2719,

— Scatterometer

— Altimeter


https://doi.org/10.1175/MWR-D-11-00156.1

Global Navigation Satellite System Radio Occultations
GNSS RO (GPS RO) geometry

Occulting GPS

Time Delay & Bend Angle
Provide Density vs. Altitude

Occulting LEO

Satellite

As the LEO moves behind the Earth we obtain a profile of bending
angles. The forward model "0(0) computes bending angle as a
function of impact parameter (height),| (c)8

The bending angle depends on temperature, humidity and pressure.



Global Navigation Satellite System Radio Occultations
GNSS RO (GPS RO) geometry

As the LEO moves behind the Earth we obtain a profile of bending
angles. The forward model ] (x) computes bending angle as a

Key characteristics

 Limb geometry means very good vertical
resolution

e Can be assimilated without bias
correction

The bending angle depends on temperature, humidity and pressure.



ECMWEF data coverage (used observations) - GPSRO
2025031303 to 2025031309
Total number of obs = 60274
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< ECMWF



GNSS-RO has biggest impact in upper-troposphere/stratosphere
Fits to radiosonde temperature observations

Normalised standard deviation in (o-b) departure

Pressure [hPa]

Global, ECMWF /
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Scatterometer

v' A Scatterometer is an active microwave instrument (side-looking radar)
= Day and night acquisition
= Not affected by clouds Incoming §§ Returned

v" The return signal, backscatter (o, sigma-nought), is sensitive to:

= Surface wind (ocean) NN

= Soil moisture (land)
= |ce age (ice)

v Scatterometer was originally designed to measure ocean wind vectors:

= Measurements sensitive to the ocean-surface roughness due to capillary gravity
waves generated by local wind conditions (surface stress)

= Observations from different look angles: wind direction




Dependency of the backscatter on... Wind speed (Bragg scattering)
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ASCAT Scatterometer Coverage

#7 Antenna Azimuth Angle

The COMET Prog

EG, ASCAT

We measure be back scatter from
three directions

« Fore/mid/aft
Triplet of backscatters used in a
geophysical model function (GMF)

to provide vector wind information.

But the vector wind solutions are
ambiguous!



How can we relate backscatter to wind speed and direction?

The relationship is determined empirically by
developing a Geophysical Model Function (GMF)
= |deally collocate with surface stress observations
= In practice with buoy and 10m model winds

ASCAT Scatterometer Coverage

, 00 "OY ek

U,on: €quivalent neutral wind speed

f: wind direction w.r.t. beam pointing
g: incidence angle

p: radar beam polarization

/ microwave wavelength




Dependency of the backscatter on... Wind direction

upwind ‘
downwind <

Direction of wave travel ———
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Each wind vector cell has usually two possible solutions for wind direction and

Wind Direction Ambiguity removal

speed
The correct solution is determined during the 4D-Var
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Past, present and future scatterometers

Used on European platforms (1991 onwards):
v SCAT on ERS-1, ERS-2 by ESA ASCAT Scatterometer Coverage
v ASCAT on Metop-B/C by EUMETSAT
v SCAT on EPS-SG planned until 2040

-1

\
)‘S\zs.r g,
Sub-Satellite Track

Antenna Incidence Angle

= Frequency ~5.3 GHz
= Wavelength ~5.7 cm
= Three antennae
= Enables estimation of
both wind speed and
wind direction

Also, Chinese scatterometer data available
now, including:

v' HY-2B, HY-2C (HY-2D will be tested)



Why is Scatterometer important?

The scatterometer provides the ocean surface wind information (ocean wind vectors).

Ocean surface winds:
= affect the full range of ocean movement
= modulate air-sea exchanges of heat, momentum, gases, and particulates

= direct impact on human activities Important data source in tropical

cyclones

ECMWF data coverage (used observations) - SCATTEROMETER st T
2025031303 to 2025031309 <
Total number of obs = 124156

o e X wmecany
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Some improvements in SCAT usage

« Increased the SCAT usage (reducing the thinning é
applied) in 2023

» SCAT observation sensitive to the relative motion
between the atmosphere and ocean

— At the moment, we ignore the ocean current but this will

change in next operational cycle (50R1)

100 km thin 50 km (48R1, 2023)

 Tested the direct assimilation of sigma0 — rather than
assimilating ambiguous vector winds (more controversial)

— we now handle non-linearity better in DA

— Revisit the SCAT sigma0 problem and train a neural
network to compute ,  "00 "0y  Hsh-h

<SS ECMWF



SCATT Data Assimilation

Current approach
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ASCAT Scatterometer Coverage
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Training against
model first guess
(FG) wind

e Can we assimilate
sigma0 directly?

< ECMWF

10

04

IR
?

Model Sigma0 (dB)
N
T

10,000,000
1,000,000
100,000
10,000
1,000

100

FG Wind + FC Surface Stress
Aug. 2021 - Jul. 2022 (Global - All)

|
En'tries

38,412,384
MeansSCB -19.281
Mean Model -19.231
Bias (Mod-ASCB) 0.050
St Dev of Diff. 1.204
1.4826 * MAD 0.854

- w Correlation Coef 0.974
Symmetric Slope 0.996
Reg. Coefficient 0.950
Reg. Constant  -0.911
-40 T T T T
-40 -30 -20 -10 0 10

ASCAT-B Sigma0 (dB)



Radar Altimeters

v/ Radar altimeter is a nadir looking instrument.

v’ Specular reflection.

v Electromagnetic wave bands used in altimeters:

" Primary:
* Ku-band (™~ 2.5 cm) — Jason-3, Sentinel-3A/B/6
* Ka-band (~ 0.8 cm) — SARAL/AItiKa (only example) ECMWF data coverage (used observations) - WAVE HEIGHT
2025031303 to 2025031309
[ Seco nda ry: Total number of obs = 5047

 C-band (~5.5 cm) —Jason-3, Sentinel-3a,3b,6 LT R R

v Main parameters retrieved from an altimeter:
= Sea surface height (ocean model)
= Significant wave height (wave model) >
= Wind speed retrievals (used for verification)

3 3 3 § 3 3 3% 31 3%
T 3§ 3§ 3 ¢ 3§ 3§ § 3

SCECMWF



How Altimeter Works

Height%aalz 3¢
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surface

emitted signal returned signal

flat surface
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Sea Surface Height

waveform

power

time

v Time delay - sea surface height

v' Radar signal attenuation due to the atmosphere is caused by:
= Water vapour impact: ~ 10’s cm.
= Dry air impact: ~2.0 m
Correction made using radiometer and model data



Surface wind speed

f\ i /\ T waveform

oll amplitudeof |
FAR = || returned signal
P o||l = wind speed
2% :
emitted signal backscatter

time

v Backscatter is related to water surface Mean Square Slope (MSS)
v' MSS can be related to wind speed
v" Stronger wind - higher MSS - smaller backscatter

v" Errors are mainly due to algorithm assumptions, waveform retracking (algorithm), unaccounted-for
attenuation & backscatter.



Significant Wave Height (SWH)

slope of leading edge
’. = SWH

waveform
)
=
o
o

time

v" SWH is the mean height of highest 1/3 of the surface ocean waves
v Higher SWH - smaller slope of waveform leading edge

v Errors are mainly due to waveform retracking (algorithm) and instrument
characterisation.



Altimeter corrections
applied to sea surface
height

Sea Surface Height = Satellite altitude — Range - Corrections

<~ ECMWF

52



Corrections to sea surface height measurements

» Propagation corrections — path delay of radar return signal due
to:

— lonosphere: electron content of the atmosphere.

» Calculated by combining radar atimeter measurements acquired at two
separate frequencies;

e 0to50cm.

— Wet troposphere: cloud liquid water and water vapour in the
atmosphere.

* Retrieved from radiometer measurements and/or estimated from
meteorological models;

« Correction ~0 to 50 cm.
— Dry troposphere: dry gases in the atmosphere.
» Calculated from meteorological models.

» Related to surface pressure ~2.3 m.

<SS ECMWF

EUROP EAN CENTRE FOR MEDIUM -RANGE WEATHER FORECASTS

~

.

Propagation corrections
*ionosphere

»wet troposphere
»dry troposphere

"

*inverse barometer

L

h=S-R
Surface corrections h
*EM bias

Instrument corrections
»tracker bias

waveform sampler gain
calibration biases
»antenna gain pattern
*AGC attenuation
*Dopplershift

*range acceleration

» oscillator drift

*pointing angle/sea state

External geophysical adjustments

+geoid heighthy

»ocean/solid earth/pole tides h,
» atmosphericpressure loading h;

Sea surface



Corrections to sea surface height measurements

» Propagation correctio

opagatlon corrections

Calculated by combining radar altimeter measurements acquired at two
separate frequencies;

e 0to50cm.

— Wet troposphere: cloud liquid water and water vapour in the
atmosphere.

* Retriev radiometer

meteor( models; —
e+ ™ = ground-based GPS
— Dry troposphere: dry gases in the atmosphere. h=S=R R

» Calculated from meteorological models.

» Related to surface pressure ~2.3 m.

= S

S ECMWF
v EUROPEAN CENTRE FOR MEDIUM -RANGE WEATHER FORECASTS

Instrument corrections
tracker bias
-waveform samplergain
calibration biases
»antenna gain pattern
*AGC attenuation
*Dopplershift

*range acceleration

» oscillator drift

*pointing angle/sea state

External geophysical adjustments
+geoid heighthy

»ocean/solid earth/pole tides h,

» atmosphericpressure loading h;

Sea surface



Quality Control (QC)
Really important in DA methodology — but getting
squeezed as training course grows



QC: The linear scalar temperature problem

Background Tb (1.0K error)
0.6 Observation To (1.0K error)
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. Assume the standard deviation of the background and observation errors are 1 K. The

assumed error statistcs det er mi ne t he8“gain matri x"”,

« If these errors are uncorrelated, the st. dev. of ("Y “Y) differences should be about VcK.

» All observations have errors — we accept that (R matrix). But what should we make of a
difference of, say, ("Y "Y) > 20 K? The actual errors in this case are probably not
consi stent with the eriindheé matrix.t i sti cs we’  ve a



Large departures can be caused b\

» Either the observation errors are large or the background (forecast) errors are large

* A real example that caused problems at ECMWF : TC Mocha May 13 2023

Observations from BUOY Id : 2302632
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TC Mocha
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Q. J. R. Meteorol. Soc. (1999), 125, pp. 697-722

Varniational quality control

By ERIK ANDERSSON* and HEIKKI JARVINEN
European Centre for Medium-Range Weather Forecasts, UK

What is the probability of an (0  -b) of this size given R and B?

Normal departurewiors have different distributions
QC \« G

The a priori probability of gross error




Assumed distributions

 The gross errors have a flat distribution

R
2d
» The ordinary departures a normally distribruted
~ o ~2
N=_ L expg- 134y - ngg
SV 210 é 2(; So + B



Take —In(0  )=0

y+exp(=JY)

J¥ =—In

VJE =vJ>

with vy defined as:y =

1

v +1

/4

-y texp(—JY) |

A~ 27

(1— A)2d



Take —In(0  )=0

with vy defined as:y =

(1— A)2d



So, we weight the (o-b) departures by 1 minus the Probability
of Gross Error (PGE) . The a priori_PGE, A, Is updated based
on the size of the (0 -b) departure using Bayes Theorem !

The large (o -b) of 20 K in our scalar example would be
multiplied by (1 -PGE)

with vy defined as:y =

(1— A)2d



In recent years we have also used the Huber norm

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 1514—1527, July 2015 A DOI:10.1002/qj.2440

Royal Meteorological Society

On the use of a Huber norm for observation quality control
in the ECMWF 4D-Var

Christina Tavolato®” and Lars Isaksen®*
*European Centre for Medium-Range Weather Forecasts, Reading, UK
®Department of Meteorology and Geophysics, University of Vienna, Austria

*Correspondence to: L. Isaksen, ECMWFE, Shinfield Park, Reading RG2 9AX, UK.
E-mail: lars.isaksen@ecmwf.int




The Huber norm is less conservative than VarQC
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The Huber norm is less conservative than VarQC

with

fx) =

P (x) =

|

O, 27T

exp {_

& ?) } Derived from
departure
statistics
Can be

or 1+ €Y asymmetric

either side of
for |x| > c, peak.
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COST function + weight

No QC: Gaussian
Solid line: Huber norm
Dotted line: “VarQC”

Huber norm gives more
weight than VarQC in the
1 W i n "

Should we be more
conservative and revert to
VarQC?
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Summary

» Aim of data assimilation is to retrieve as much information from observations as possible
and provide good initial conditions for the forecast model. We need

— observation operator, 'O 6
— estimate of observation error statistics to provide the weighting, 1

* Impact of in-situ and actively sensed observations in global NWP
— Impact of the data types, how we assimilate the data
— We continue to develop and improve our use of in-situ data

* Quality control — a vital part of DA methodology
— introduced the VarQC and Huber norm approach used at ECMWF
— We need to screen out cases when their errors are not consistent with the 1 we assume
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