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Importance of Background Covariances

l The formulation of the Jb term of the cost function is 
crucial to the performance of current analysis systems.

l To see why, suppose we have a single observation of the 
value of a model field at one gridpoint.

l For this simple case, the observation operator is:

  H = ( 0,...,0,1,0,...,0) .

l The gradient of the 3dVar cost function is:

  ÑJ = B-1(x-xb) + HTR-1(Hx-y) = 0
l Multiply through by B and rearrange a bit:

  x - xb = B HTR-1(y-Hx)
l But, for this simple case, R-1(y-Hx) is a scalar
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Importance of Background Covariances

l So, we have:
l But, H = ( 0,...,0,1,0,...,0)
l => The analysis increment is proportional to a 

column of B.

l The role of B is:
1. To spread out the information from the observations.
2. To provide statistically consistent increments at the 

neighbouring gridpoints and levels of the model.
3. To ensure that observations of one model variable (e.g. 

temperature) produce dynamically consistent increments in the 
other model variables (e.g. vorticity and divergence). 

TBHxx µ- b
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Main Issues in Covariance Modelling

l There are 2 problems to be addressed in specifying B:

1. We want to describe the statistics of the errors in the 
background.
- However, we don't know what the errors in the background are, 

since we don't know the true state of the atmosphere.

2. The B matrix is enormous (~108x108).
- We are forced to simplify it just to fit it into the computer.
- Even if we could fit it into the computer, we don't have enough 

statistical information to determine all its elements.
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Diagnosing Background Error Statistics

l Problem:
- We cannot produce samples of background error. (We don’t 

know the true state.)

l Instead, we must either:
§ Disentangle background errors from the information we do have: 

innovation (observation-minus-background) statistics.

l Or:
§ Use a surrogate quantity whose error statistics are similar to 

those of background error. Two possibilities are:

§ Differences between forecasts that verify at the same time.

§ Differences between background fields from an ensemble of 
analyses.
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Diagnosing Background Error Statistics

l Three classic approaches to estimating Jb statistics:
1. The Hollingsworth and Lönnberg (1986) method

- Differences between observations and the background are a combination 
of background and observation error.

- The method tries to partition this error into background errors and 
observation errors by assuming that the observation errors are spatially 
uncorrelated.

2. The NMC method (Parrish and Derber, 1992)
- This method assumes that the spatial correlations of background error 

are similar to the correlations of differences between 48h and 24h 
forecasts verifying at the same time.

3. The Analysis-Ensemble method (Fisher, 2003)
- This method runs the analysis system several times for the same period 

with randomly-perturbed observations and models. Differences between 
background fields for different runs provide a surrogate for a sample of 
background error.



ECMWFSlide 7

Estimating Background Error Statistics 
from Innovation Statistics
l Assume:

1. Background errors are independent of observation errors.
2. Observations have spatially uncorrelated errors (for some 

observation types).
l Let di=yi-Hi(xb) be the innovation (obs-bg) for the ith 

observation.
l Then, denoting background error by ε, observation error 

by  η, and neglecting representativeness error, we have 
di=ηi-Hi(ε).
 1. => Var(di) = Var(ηi) + Var(Hi(ε))
 2. => Cov(di , dk) = Cov(Hi(ε) , Hk(ε)) (i and k not co-located)

l We can extract a lot of useful information by plotting 
Cov(di , dk) as a function of the distance between pairs 
of observations.
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Estimating Background Error Statistics 
from Innovation Statistics

(from Järvinen, 2001)

Covariance of 
d=y-H(xb) for 
AIREP 
temperatures 
over USA, 
binned as a 
function of 
observation 
separation.
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Estimating Background Error Statistics 
from Ensembles of Analyses
l Suppose we perturb all the inputs to the 

analysis/forecast system with random perturbations, 
drawn from the relevant distributions:

l The result will be a perturbed analysis and forecast, with 
perturbations characteristic of analysis and forecast 
error.

l The perturbed forecast may be used as the background 
for the next (perturbed) cycle.

l After a few cycles, the system will have forgotten the 
original initial background perturbations.

Analysis
xb+εb
y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf
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Estimating Background Error Statistics 
from Ensembles of Analyses

Analysis
xt+εb
yt+εo

SSTt+εSST (etc.)

xt+εa
Forecast

xt+εf

Analysis
xb
y

SST (etc.)

xa
Forecast

xf

Analysis
xb+εb
y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf

Normal Analysis

Perturbed Analysis
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Estimating Background Error Statistics 
from Ensembles of Analyses
l Run the analysis system several times with different 

perturbations, and form differences between pairs of 
background fields.

l These differences will have the statistical characteristics 
of background error (but twice the variance).

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb

Background differences



ECMWFSlide 12

Estimating Background Error Statistics 
from Ensembles of Analyses

500hPa Geopotential
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Estimating Background Error Statistics 
from Ensembles of Analyses

~200hPa

~500hPa

~850hPa

NMC Method Analysis-Ensemble Method
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Estimating Background Error Statistics – 
Pros and Cons of the Various Methods
l Innovation statistics:

J The only direct method for diagnosing background error statistics.
L Provides statistics of background error in observation space.
L Statistics are not global, and do not cover all model levels.
L Requires a good uniform observing network.
L Statistics are biased towards data-dense areas.

l Forecast Differences:
J Generates global statistics of model variables at all levels.
J Inexpensive.
L Statistics are a mixture of analysis and background error.
L Not good in data-sparse regions.

l Ensembles of Analyses:
L Assumes statistics of observation error (and SST, etc.) are well known.
J Diagnoses the statistics of the actual analysis system.
L Danger of feedback. (Noisy analysis system => noisy stats => noisier system.)
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In variational analysis the B matrix is usually defined implicitly 
in terms of a transformation from the departure δx in state 
space to a control variable χ:

δx = x-xb = Lχ
where L verifies B=LLT

In the spectral formulation (Derber and Bouttier, 1999), the change 
of variable L has the form:

L = K Bu
1/2 

where K is a balance operator going from the set of “unbalanced “ 
variables [ζ, ηu, (T,ps)u,q] (the “control vector”) to the set of state 
variables [ζ, η,(T,ps),q]
There is a degree of flow-dependence in K as the balance 
constraints are linearised about the first-guess trajectory 

Spectral B model
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δx = x-xb = Lχ      L = K Bu
1/2 

Since we assume that the balance operator accounts for all 
inter-variable correlations, Bu is block diagonal 

Each block in Bu is of the form ΣTCΣ. 
Σ is the gridpoint standard deviation of background errors. 
C models the autocorrelation of the control variables. It is block 
diagonal with one full vertical correlation matrix for each spectral 
wavenumber, i.e. Cn(NLEV,NLEV) (non-separable B model)

Spectral B model
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Vorticity correl. wavenum=2 Vorticity correl. wavenum=64

Vorticity bg error stdev, 500hPa Vorticity bg error corr. Lscale, 500hPa

C2(NLEV,NLEV) C64(NLEV,NLEV)
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•The spectral B model is one end of the spectrum:  full resolution of 
the variation of vertical correlation with horizontal wavenumber,  but 
it allows no variation with horizontal location.

•The other end of the spectrum is represented by the separable 
formulation which allows full variation of the correlations with 
horizontal location, but allows no variation of vertical correlation with 
horizontal wavenumber.

•The wavelet B (Fisher, 2003) is a compromise between these two 
extremes and allows a degree of variation of correlation with both 
wavenumber and horizontal location.

From Spectral to Wavelet B model
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• The wavelet B is based on a wavelet expansion on the sphere.

• The basis functions (wavelets) are chosen to be band-limited and, 
to a good approximation, spatially localized

Wavelet B model
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• The correlation matrices Cn[NlevxNlev] are now of the form 
Cj[NlevxNlev](λ,φ), where j is now the index of the wavelet component

• The choice of the wavelet bandwidths [Nj, Nj+1] determines the trade-off 
between spectral and spatial resolution. If the bands are narrow, the 
corresponding wavelet functions are not spatially localized, and vice versa

Wavelet B model

Climat. Spectral B
Vorticity bg error corr. Lscale, 500hPa

Climat. Wavelet B
Vorticity bg error corr. Lscale, 500hPa
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The wavelet B formulation:

 

can be made flow-dependent by obtaining flow-dependent  
estimates of the background error variances (Σb) and 
correlations (Cj(λ,φ)) from the EDA background perturbations

Flow-dependent wavelet B model

( ) ( )[ ]jj
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jbb cfly ,2/12/1 CKΣLχxx Ä==- å
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Diffusion Operators and Digital Filters

l Spectral/wavelet approaches are efficient and convenient 
for models with regular (e.g. spherical or rectangular) 
domains.

l Difficult to use if the domain is not regular (e.g. ocean 
models).

l Because the spectral approach is based on 
convolutions, it is difficult to incorporate inhomogeneity 
and anisotropy.

l Diffusion operators and digital filters provide alternatives 
to the spectral approach that address these difficulties.
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Diffusion Operators

l The 1-dimensional diffusion equation:

l Has solution at time T:

l That is,              is the result of convolving              with 
the Gaussian function:
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Diffusion Operators

l The one-dimensional result generalizes to more 
dimensions, and to different geometries (e.g. on the 
sphere).

l Weaver and Courtier (2001) realized that numerical 
integration of a diffusion equation could be used to 
perform convolutions for covariance modelling.

l Irregular boundary conditions (e.g. coastlines) are easily 
handled.

l More general partial differential equations can be used to 
generate a large class of correlation functions:
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Digital Filters

l In one-dimension, convolution with a Gaussian may be 
achieved, to good approximation, using a pair of 
recursive filters:

l In two dimensions, the Fourier transform of the Gaussian 
factorizes:

- => 2-D convolution may be achieved by 1-D filtering in the x-direction, 
and then in the y-direction.

l NB: This factorization only works for Gaussians!
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Digital Filters

l Non-Gaussian covariance functions may be produced as 
a superposition of Gaussians.
- I.e. the filtered field is the weighted sum of convolutions with a 

set of Gaussians of different widths.

l Inhomogeneous covariances may be synthesized by 
allowing the filter coefficients to vary with location.

l Simple anisotropic covariances (ellipses), with different 
north-south and east-west length scales, can be 
produced by using different filters in the north-south 
direction.

l However, fully general anisotropy (bananas) requires 3 
independent filters (north-south, east-west, and SW-NE) 
in 2 dimensions and 6 filters in 3 dimensions.
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Digital Filters

l There is a close connection between digital filter 
methods and diffusion operator methods.
- One timestep of integration of a diffusion operator can be viewed 

as one application of a digital filter.

l Advantages of Digital Filters:
- Computational Efficiency
- Generality

l Disadvantages:
- Filter coefficients are difficult to determine from data.
- Grid geometry, polar singularities and boundary conditions must 

be handled carefully.



ECMWFSlide 40

Summary

l A good B matrix is vitally important in any (current) data assimilation system.

l In a large-dimension system, covariances must be modelled: The matrix is too 
big to specify every element.

l Innovation Statistics are the only real data we have to diagnose background 
error statistics, but they are difficult to use.

l Analysis ensembles allow us to generate a good surrogate for samples of 
background error.

l Spectral representations work well for simple geometries (spherical or 
rectangular domains) but anisotropic and/or inhomogeneous covariances are 
tricky!

l Wavelet formulation allows inhomogeneous covariances.

l Diffusion operators and digital filters have fewer limitations, but calculating 
the diffusion/filter coefficients is non-trivial.


