Model bias In data assimilation

Patrick Laloyaux

Identify systematic errors in model (biases)
Learn how to develop bias correction methods

Prospect for future developments



What you have seen so far on data assimilation
Model (with errors) | Observations (with errors)

If you are lucky, model and observations are not biased

Observation error Observation error

Observation error Observation error
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What you have seen so far on data assimilation

Observation error Observation error

S s
=» Qutliers =» Precise but not accurate
=>» Variational Quality Control (VarQC) =>» Variational Bias Control (VarBC)
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What happens when VarBC is used with a biased model

VarBC corrects the observations towards the

Observation biag model (that is biased)
f =» This will produce a biased analysis
(especially when few anchors observations are

Obgservatione avallable)

= We need another algorithm to handle model
biases: weak-constraint 4D-Var

VarBC

Anchor obscervatione

C % Analysis
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Model trajectory



What happens when VarBC is used with a biased model

VarBC corrects the observations towards the

Obgervation bias model (that is biased)
f =» This will produce a biased analysis
(especially when few anchors observations are

OQServat/ohg avallable)

= We need another algorithm to handle model
biases: weak-constraint 4D-Var
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Model bias

Model trajectory



How to estimate model biases

The first-guess trajectory of the model can
be compared to accurate observations
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Errors in models are often systematic rather than random, zero-mean
—> Largest bias in the stratosphere

- Model has a temperature cold bias in the lower/mid stratosphere

- Model has a warm bias in the upper stratosphere



How to estimate model biases

The GPS satellites are used for positioning and navigation. GPS-RO (Radio
Occultation) is based on analysing the bending caused by the atmosphere along paths
between a GPS satellite and a receiver placed on a low-earth-orbiting satellite.

Occulting GPS

Satellite
< Time Delay & Bend Angle

Provide Density vs. Altitude

Occulting LEO

Satellite

- As the LEO moves behind the earth, we obtain a profile of bending angles
- Temperature profiles can then be derived

- GPS-RO can be assimilated without bias correction. They are good for
highlighting errors/biases



How to estimate model biases

The first-guess trajectory of the model can be compared to accurate observations
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Errors in models are often systematic rather than random, zero-mean

- Model has a temperature cold bias in the lower/mid stratosphere

- Model has a warm bias in the upper stratosphere



How to deal with model biases in data assimilation

Strong constraint 4D-Var
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Weak constraint 4D-Var
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Weak constraint 4D-Var

We assume that the model is not perfect, adding an error term n in the model equation
rr = Mg(xgp—1)+n fork=12,--- | K

The model error estimate n contains 3 physical 3D fields

= temperature

= vorticity

= divergence

Constant model error forcing over the assimilation window to correct the model bias
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-> Introduce additional controls to target an unbiased analysis
- The model error covariance matrix Q constrains the model error field
—> This looks very much like VarBC with a constant predictor, but in the model space!



How to estimate the model error covariance matrix (Q)

Estimate the model error covariance matrix

=> run the ensemble forecasting system (ENS)
with perturbed physics (51 members with the
same initial condition for different days)

=» differences after 12 hours are used to
compute Q
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How fast does weak-constraint 4D-Var learn?
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Weak-constraint 4D-Var in operations for the stratosphere

Time series of the difference between radiosonde temperature observations and
model first-guess (47r1 implemented on 30 June 2020)
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Weak-constraint 4D-Var in operations for the stratosphere

RO temperatures
minus forecasts l
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A) On 31 December 2020, a Sudden Stratospheric Warming (SSW) event

started over the northern hemisphere

B&C) Clear seasonal cycle in the model bias over the southern
hemisphere with a sharp transition in early December 2020 and 2021



Model biases in the boundary layer

Several diagnostics shows that the structure of model biases is time-correlated
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Model biases in the boundary layer
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New model for model bias:
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Model biases in the boundary layer

Model bias correction (level 137) Impact in the mean state against
radiosondes
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Possible future application of WC4DVar

We can see weak-constraint 4D-Var as a tool to build hybrid models
rr = Mp(xp—1)+n fork=12,--- | K

[ Physical model

=» introducing a statistical model
Hybrid model that is data-driven to correct for
model errors

Statistical model

Mean error of the 10-day forecast at 50hPa with respect to the radiosonde observations
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Possible future application of WC4DVar

Surface temperature mean error (Tropics)
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Using hybrid models for reanalysis
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Challenge: reduce artefacts in the stratosphere coming from model biases
while preserving climate trends. Amplitude of current spurious signal can
be large (>1K)



Using hybrid model for reanalysis

1. Weak-constraint 4D-Var estimates model 3. The ML correction can be applied over any
biases effectively over recent periods (2021/2023) reanalysis period (e.g. Jan 1959 to May 1959)

d

Mogel error correction from weak-constraint 4D-Var

ERAS5-like anomaly at 7hPa
ERAG-like anomaly at 7hPa
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2. This model bias correction is emulated
using ML with the model first-guess as input
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Model error correction from Neural Network
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4. Emulator cools down the upper
stratosphere to account for the warm bias
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Another possibility for a hybrid model

The hybrid model (physical model + NN correction) is estimated inside 4D-Var

Xp41 = Mk (P Xk) = Mgk (Xk) + F (P, Xk)

NN online loss function

1 1 1 &
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online correction

offine correction A FarC| et al 2021

0 4096 8192
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=» learn both model state and NN
parameters from observations

=» TL and ADJ are available

=>» the online correction steadily
improves the model, learning
from observations



Another possibility for a hybrid model

NN online loss function

1 1 1 <&
J™ (P, %o) = 2 |0 — x3||2B-1 +3 |p - Pb||f:_1 +3 Z lyx — Hi o M (P,Xo)||2R;1
k=0

In weak-constraint 4D-Var, an error term is introduced in the model equation

Xp = Mpire (X)) +W

WC4D-Var cost function
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Not the job of weak-constraint 4D-Var: Model gross errors

Observation error

10118 [9pON

Total precipitation on 07 June 2019
(accumulated over 6 hours)

1 Friday (y June 201%18 utc e%f t+7 VT:%adurday 08 :%ne 2019 OédJTC surfa;,‘% Total prﬁﬁitation 150 300

0.1

- Continuous monitoring
- Keep improving the model




Summary 1/3
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Background: unbiased (only random errors)
Observation: unbiased (only random errors)
Standard 4D-Var

Background: unbiased (only random errors)
Observation: biased
Standard 4D-Var & Variational Bias Control (VarBC)

Background: biased
Observation: unbiased (only random errors)
Weak constraint 4D-Var



Summary 2/3

How do | know if my observations are biased?
How do | know if my model is biased?
You don’t know the truth, but you have to trust something

Reference observations are used

Radiosondes

GPS-RO



Summary 3/3

From bias-blind to bias-aware data assimilation
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Any questions? Feel free to contact me patrick.laloyaux@ecmwf.int



