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Errors in observations

• Every observation has an error vs the truth:
– Systematic error 

• Needs to be removed through bias correction (previous lecture)
– Random error 

• Topic of this lecture!
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Contributions to observation error
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Measurement error
E.g., instrument noise for satellite 
radiances

Forward model (observation operator) 
error

E.g., radiative 
transfer error

Representativeness error
E.g., point 
measurement 
vs model 
representation

Quality control/pre-processing error
E.g., error due to the cloud detection 
scheme missing some clouds in clear-
sky radiance assimilation

?

Representation error
(e.g., Janjić et al 2017)
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Measurement error
E.g., instrument noise for satellite 
radiances

Forward model (observation operator) 
error

E.g., radiative 
transfer error

Representativeness error
E.g., point 
measurement 
vs model 
representation

Quality control/pre-processing error
E.g., error due to the cloud detection 
scheme missing some clouds in clear-
sky radiance assimilation

?
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(e.g., Janjić et al 2017)

• Are the errors situation-dependent?
• Are the errors correlated (spatially, 

temporally, between channels)?
• Are the errors systematic (→bias 

correction)?
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Examples of situation-dependence of representation error

• Cloud/rain-affected radiances: Representativeness error is much larger in cloudy/rainy regions 
than in clear-sky regions

• Effect of height assignment error for Atmospheric Motion Vectors:
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Low shear – small wind error due to height 
assignment error

Strong shear – larger wind error due to 
height assignment error
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Examples of correlated observation error

• Different channels with similar radiative transfer error.

• Different channels with similar error in spatial representativeness.

• Different channels with similar cloud sensitivity in clear-sky assimilation.

• Even instrument noise can be correlated.

8EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



October 29, 2014

Observation error and the cost function

• In data assimilation, observation errors are commonly assumed Gaussian.

• Denoted by the observation error covariance matrix “R” in the observation cost function:

• It is often specified through the square root of the diagonals (“σo”) and a correlation matrix (which 
can be the identity matrix).
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Role of observation error

• R and the background error B together determine the weight of an observation in the assimilation.

• In the linear case, the minimum of the cost function can be found at xa:

– “Large” observation error → smaller increment, analysis draws less closely to the observations

– “Small” observation error → larger increment, analysis draws more closely to the observations
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Current observation error specification for satellite data in the ECMWF system

• Globally constant, diagonal:

– Scatterometer data

• Globally constant fraction, dependent on impact parameter; diagonal:

– GPS-RO

• Globally constant, inter-channel error correlations taken into account:

– IASI, CrIS, AIRS, ATMS (with different values for different satellites)

• Situation dependent, diagonal:

– All-sky treatment of radiances from passive microwave instruments: dependent on satellite, channel and 
cloud amount

– AMVs: dependent on level and shear (and satellite, channel, height assignment method)

– Aeolus: based on physically estimated error for each derived wind
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How can we estimate observation errors?
• Observation errors are departures from the truth – which we don’t know.

• We can only estimate observation errors. Several methods exist to do this, broadly categorised as:

– Error inventory:

• Based on considering all contributions to the error/uncertainty

– Diagnostics with collocated observations, e.g.:

• Hollingsworth/Lönnberg on collocated observations
• Triple-collocations/3-cornered hat

– Diagnostics based on output from DA systems, e.g.:

• O-b statistics
• Hollingsworth/Lönnberg
• Desroziers et al 2005
• Methods that rely on an explicit estimate of B

– Adjoint-based methods
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Error inventory

• Estimate the error from physical estimates of all uncertainty contributions.
• Example: error inventory for IASI
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Instrument noise (information from data providers)

Radiative transfer error (difficult…)

Spatial representativeness error (e.g, through high vs 
low-resolution simulations)

Cloud detection error (e.g., using simulations of cloudy 
radiances)

Total error

(Courtesy Hyoung-Wook Chun, 
Reima Eresmaa)
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Error inventory

• Estimate the error from physical estimates of all uncertainty contributions.
• Example: error inventory for IASI

• Very useful to understand error contributions. 
• How realistic is each estimate? 
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Error inventory and physical observation error models
• Other applications of an inventory approach:

– Physical error models: propagate parameter uncertainty through observation operator/retrieval
– Useful for identifying leading contributors of observational uncertainty
– Basis for “observation error models” to capture situation-dependence of observation errors
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An observation error model for the height 
assignment uncertainty could be:

Large shear – larger error due to height 
assignment error

σHA ≈ σp
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Low shear – smaller error due to height 
assignment error

Example: Atmospheric Motion Vectors and the error due to height assignment:
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Departure-based diagnostics

• Several methods have been developed that are based on departures from data assimilation systems (ie 
o-b, o-a).

• If observation errors and background errors are uncorrelated then:

• In this case, stdev(o-b) is an upper bound for σo.

• Statistics of background departures give information on observation and background error combined. 
To separate the two, we need to make assumptions (which may or may not be true).
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Departure-based observation error diagnostics:
Methods that rely on an estimate of the background error

• Basic assumptions:
– Background and observation error are uncorrelated.
– We have a reliable estimate of the background error, for instance:

• Background error is small:

• Or: we “know” H Btrue HT from the assimilation system: 
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Departure-based observation error diagnostics:
Hollingsworth/Loennberg method

• Basic assumption:
– Background errors are spatially correlated, whereas observation errors are not.
– This allows to separate the two contributions to the variances of background departures.
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• Recipe: 
– Take a large database of pairs 

of departures and bin by 
distance between the 
observations.

– Calculate covariance of 
departures for each bin.

• Drawback: 
– Not reliable when observation 

errors are spatially correlated.
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Departure-based observation error diagnostics:
Desroziers diagnostic (I)

• Basic assumptions:
– Assimilation process can be adequately described through linear estimation theory.

– Weights used in the assimilation system are consistent with true observation and background errors.

• Then the following relationship can be derived:

with                                      (analysis departure)

                                            (background departure)

(see Desroziers et al. 2005, QJRMS)

• Consistency diagnostic for the specification of R. Increasingly used to estimate R.
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Some points on departure-based diagnostics
• All departure-based diagnostics rely on assumptions (which may or may not be true):

– Assume we know the background error characteristics → remove B

– Assume a certain structure of the errors → Hollingsworth/Lönnberg

– Assume weights used in the assimilation system are accurate → Desroziers diagnostic

• All diagnostics additionally assume that the error in the observations and background are 
uncorrelated.

• Before applying any diagnostic, think about whether the assumptions are likely to be true.

• It is best to use several diagnostics to avoid misleading estimates due to violated assumptions.

• Diagnostics do not tell you where the error comes from.

– Additional physical understanding of the error sources will be beneficial  → error inventory.

– Diagnostics can be used together with physical error models.
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Examples of applying observation error diagnostics: AMSU-A
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Diagnostics for σO
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Examples of applying observation error diagnostics: AMSU-A
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Inter-channel error correlations:

Hollingworth/Loennberg Desroziers
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Examples of applying observation error diagnostics: AMSU-A
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Spatial error correlations:

Channel 5 Channel 7
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Examples of applying observation error diagnostics: IASI
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Diagnostics for σO

Temperature sounding LW
Window

WV
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Inter-channel error 
correlations

Examples of applying 
observation error diagnostics: 
IASI
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Inter-channel error 
correlations

Humidity
Ozone

Examples of applying 
observation error diagnostics: 
IASI
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How do I specify observation errors in practice?
• Observation error diagnostics or error inventories can provide guidance for observation error 
specification in DA, including on:

– Relative size of observation and background errors

– Presence of observation error correlations

– Situation-dependence of observation errors

• But: 

– Estimates might have short-comings (violated assumptions).

– Observation errors specified in assimilation systems often need to be simplified:

• Observation error covariance is often assumed to be diagonal or globally constant.

→ Assumed observation errors may need adjustments compared to estimated ones.
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• Consider a linear combination of two estimates 
xb and y:

• The error variance of the linear combination is:

• The optimal weighting (ie minimum σa) is:

Too large assumed observation errors tend to be safer than too small ones.
Why?
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Danger zone: Too small assumed σo will lead to an analysis 
worse than the background when the (true) σo> σb.
Assuming an inflated σo will never result in deterioration. 



October 29, 2014

What to do when there are error correlations?
Option 1: Thinning

• If the observations have spatial error correlations, but these are neglected in the assimilation 
system, assimilating these observations too densely can have a negative effect. 
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• Pragmatic solution 1: Select one observation 
within a “thinning box”.

• See Liu and Rabier (2003), QJRMS: “Optimal” 
thinning when r ≈ 0.15-0.2

• Using fewer observations gives better results!

• (But we lose out on information on smaller 
scales.)
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What to do when there are error correlations?
Option 2: Inflation

• If the observations have error correlations, but these are neglected in the assimilation system, 
assimilating them can have a negative effect. 
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• Pragmatic solution 2: Use larger σo than 
expected (“Error inflation”).

• Neglecting error correlation with no 
inflation can result in an analysis that is worse 
than the background!

• Note: Background departure statistics for other 
observations are a useful indicator to tune 
observation errors.

Assimilation of 
IASI degrades 
upper 
tropospheric 
humidity

Assimilation of 
IASI improves 
upper 
tropospheric 
humidity

Inflation factor for the 
diagonal values of R
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Accounting for error correlations
• Accounting for observation error correlations is an area of active research.

• Efficient methods exist if the error correlations are restricted to small groups of observations (e.g., 
inter-channel error correlations).

– E.g., calculate R-1 (y – H(x)) without explicit inversion of R, by using Cholesky decomposition (algorithm 
for solving equations of the form Az = b).

– Used operationally for IASI, CrIS, AIRS and ATMS at ECMWF and many other centres

• Accounting for spatial error correlations is technically more difficult in variational algorithms, 
though methods are being developed.

– Met Office is taking spatial error correlations into account in the operational assimilation of Doppler radar 
data in their limited area model (Simonin et al 2019)
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What is the effect of error correlations?
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If errors are correlated and we assume no error correlations, we assign…
• … an error that is too small for features along the blue direction (mean-like features), leading to 

over-weighting of the observations. Hence inflation helps. 
• … an error that is too large for features along the red direction (gradient-type features).
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What is the effect of error correlations?
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Similarly, when we account for observation error correlations we tell the assimilation system that…
… departures that are similar for different observations are more likely due to errors in the observations.
… departures that are different for different observations are less likely due to errors in the observations.
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Example: Assimilation of a IASI spectrum (I)

41EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Obs-background departure
(all channels assimilated)

Error correlation matrix
Assimilate a single IASI spectrum, 
• assuming no error correlations, 
• assuming diagnosed error correlations
(σo unchanged in both cases).
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Example: Assimilation of a IASI spectrum (I)
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Obs-background departure
(all channels assimilated)

Assimilate a single IASI spectrum, 
• assuming no error correlations, 
• assuming diagnosed error correlations
(σo unchanged in both cases).
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Similar departures → increments reduced 
with error correlations taken into account
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Example: Assimilation of a IASI spectrum (II)
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Obs-background departure
(all channels assimilated)

Assimilate a single IASI spectrum, 
• assuming no error correlations, 
• assuming diagnosed error correlations
(σo unchanged in both cases).

Different departures → increments increased 
with error correlations taken into account
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Example: Assimilation of a IASI spectrum (II)
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Obs-background departure
(all channels assimilated)

Assimilate a single IASI spectrum, 
• assuming no error correlations, 
• assuming diagnosed error correlations
(σo unchanged in both cases).

Introducing error correlations will change the weighting of 
the observations in a situation(/departure)-dependent way.

Different departures → increments increased 
with error correlations taken into account
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Effect of accounting for error correlations in the assimilation of  IASI
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Assimilation of 
IASI degrades 
upper 
tropospheric 
humidity

Assimilation of 
IASI improves 
upper 
tropospheric 
humidity

Inflation factor for the 
diagonal values of R

Inflation factor for the 
diagonal values of R

Without correlations With correlations

Most centres now take inter-channel error correlations into account for the assimilation of hyperspectral IR data.
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Some points on accounting for observation error correlations
• Accounting for observation error correlations is an active area of research.

• Benefits have been demonstrated at many centres for accounting for inter-channel error 
correlation; used widely operationally.

• Note:

– Assuming error correlations puts more weight on differences between observations. Are 
these differences reliable? How reliable are inter-channel calibration/bias correction?

– Are the estimates of error correlations reliable?
– Accounting for observation error correlations can affect the conditioning of the assimilation 

and lead to slower convergence.
– Error correlation matrices may need adjustments (“re-conditioning”, inflation).

• How important it is to account for error correlations may additionally depend on the structure of 
the background error.
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Summary
• Assigned observation and background errors determine how much weight an observation 
receives in the assimilation.

• For satellite data, “true” observation errors are often correlated (spatially, in time, between 
channels, etc) and situation-dependent.

• Careful use of departure-based diagnostics can provide guidance on the setting of 
observation errors.

• Diagonal observation errors are still widely assumed for many observations, and thinning and 
error inflation are used to counter-act the effects of error correlations.

• Areas of active research:
– Development of “observation error models” to account for situation-dependence of observation errors.

– Accounting for observation error correlations (inter-channel, spatial).

– Estimation of observation errors.
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