Anemoi Training

Jesper Dramsch

Scientist for Machine Learning

Jesper.Dramsch@ecmwf.int

Anemoi framework

- Develop machine learning (ML) weather forecasting models.
 - Dataset preparation tools.
 - Graph creation tools.
 - ML model training support.
 - Inference tools integrated with verification software.
 - Registry for datasets and trained models.

• Benefits:

- Simplifies shared meteorological challenges.
- Enables training of models using existing recipes and custom data.

Anemoi framework

- Develop machine learning (ML) weather forecasting models.
 - Dataset preparation tools.
 - Graph creation tools.
 - ML model training support.
 - Inference tools integrated with verification software.
 - Registry for datasets and trained models.

• Benefits:

- Simplifies shared meteorological challenges.
- Enables training of models using existing recipes and custom data.

Diagram of dependencies within anemoi packages.

Getting started

To train a data-driven weather forecasting model in <u>Anemoi</u>, three main components are needed:

anemoi-datasets

- Create "machine-learning ready" datasets for training data-driven weather forecasts.
- Make the loading of data samples as efficient as possible
 - I/O operations are minimised
- Zarr
 - Offers an array-like view on chunks
 - Each file is a single date

anemoi-datasets.readthedocs.io

FCN

- Using datasets
 - Subsetting datasets (time, variables, member, ...)
 - Combining datasets (join, concat, cutout, ensemble, ...)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

anemoi-graphs

anemoi-graphs.readthedocs.io

In Anemoi, it is represented by a torch_geometric.data.**HeteroData** object, and stored in a .PT file.

• A graph is a structure composed of:

- Nodes: Represent locations in space.
- Edges: Define how information flows between nodes.

HeteroData(data={ x=[40320, 2], # coordinates in radians (lat in [-pi/2, pi/2], lon in [0, 2pi]) node_type='ZarrDatasetNodes', area_weight=[40320, 1], }, hidden={ x=[10242, 2], # coordinates in radians (lat in [-pi/2, pi/2], lon in [0, 2pi]) node_type='TriNodes', area_weight=[10242, 1], }, (data, to, hidden)={ edge_index=[2, 62980], edge_type='CutOffEdges', edge_length=[62980, 1], edge_dirs=[62980, 2], }, (hidden, to, hidden)={ edge_index=[2, 81900], edge_type='MultiScaleEdges', edge_length=[81900, 1], edge_dirs=[81900, 2], }, (hidden, to, data)={ edge_index=[2, 120960], edge_type='KNNEdges', edge_length=[120960, 1], edge_dirs=[120960, 2],

Console log of a graph created with anemoi-graphs.

anemoi-models

anemoi-models.readthedocs.io

• Graph Neural Networks (GNNs) are a type of neural network designed to operate on **graph-structured** data.

 \circ GNN (G) = G', where G, G' are graphs

- Node features are update based on *message passing*:
 - Message creation (from node and edge features)
 - Message aggregation
 - Node update
- Permutation-invariance

anemoi-training

- Code to train models, using torch-lightning and Hydra
 - Multi-node/multi-GPU training support
 - Deterministic training with probabilistic training coming soon...
 - Callbacks for profiling evaluating, plotting and logging intermediate results
 - Implement various losses, more can be easily added
 - Interfaces with trackers such as mlflow
- Highly configurable
- Interfaces with:
 - anemoi-dataset via data loaders
 - anemoi-models via Hydra configuration
 - anemoi-inference via metadata-rich checkpoints

anemoi-training (cont.)

Model / GNN.yml activation: GELU num_channels: 512

model:
 target:
anemoi.models.models.encoder_processor_decoder
.AnemoiModelEncProcDec

processor

target: anemoi.models.layers.processor.GNNProcessor _convert_: all activation: \${model.activation} trainable_size: \${model.trainable_parameters.hidden2hidden} sub_graph_edge_attributes: \${model.attributes.edges} num_layers: 16 num_chunks: 2 mlp_extra_layers: 0

encoder: _target_: anemoi.models.layers.mapper.GNNForwardMapper Model / GraphTransformer.yml activation: GELU num channels: 1024

model:

target:
anemoi.models.models.encoder_processor_decoder.Ane
moiModelEncProcDec

processor

target: anemoi.models.layers.processor.GraphTransformerPro cessor _convert_: all activation: \${model.activation} trainable_size: \${model.trainable_parameters.hidden2hidden} sub_graph_edge_attributes: \${model.attributes.edges} num_layers: 16 num_chunks: 2 mlp_hidden_ratio: 4 # GraphTransformer num_heads: 16 # GraphTransformer

anemoi-training train model=graphtransformer

Model / Transformer.yml activation: GELU num_channels: 1024

model:
 target:
 anemoi.models.models.encoder_processor_decoder.AnemoiModelEn
 cProcDec

processor: _target_: anemoi.models.layers.processor.TransformerProcessor _convert_: all activation: \${model.activation} num_layers: 16 num_chunks: 2 mlp_hidden_ratio: 4 # Transformer only num_heads: 16 # Transformer only window_size: 512 dropout_p: 0.0

ncoder: _target_: anemoi.models.layers.mapper.GraphTransformerFor

anemoi-training train model=transformer

anemoi-training train model=gnn

- Make it easy to switch components
- Allow for reproduceable training
- Easy to extend with new models and components

anemoi-training

Example: current AIFS configuration

Anemoi.training – MLFlow servers for Experiment Tracking

Demo

Collaboration, without aggregation around a single model

ANNOE WEATHER CORCEPTS

•

Щ

HI

