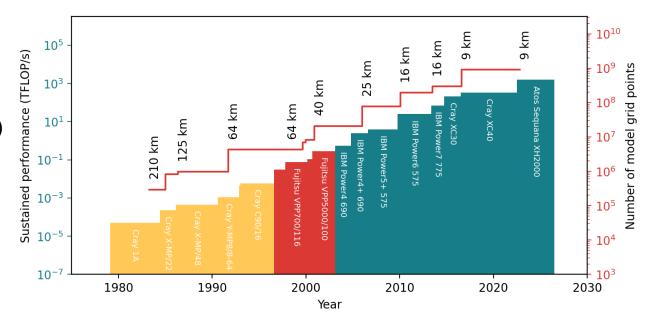
GPU adaptation of the IFS

M. Lange, A. Nawab, B. Reuter, J. Ericsson, M. Staneker, O. Marsden,


P. Gillies, Z. Piotrowski, F. Pouyan

Michael.Lange@ecmwf.int

The ECMWF HPC facility

- **Operational HPC facility since 1979**
 - Initially Reading, Bologna since 2022
- **Steady increase in compute power** (Moore's Law) has driven a steady increase in resolution
 - Computing paradigm has changed but not often...
- And now we have GPUs and AIFS!
 - Small partition of dual-CPU, quad-A100 nodes
 - New partition of 4-way Grace-Hopper nodes

Cray 1A

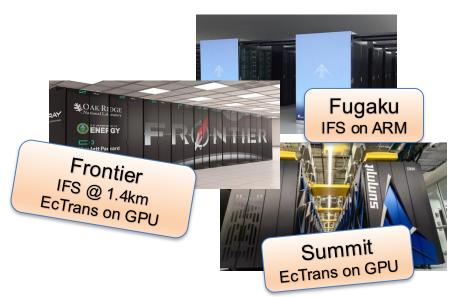
Cray X-MP/22

Fujitsu VPP700

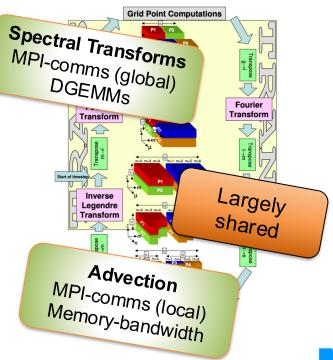
IBM Power4 690

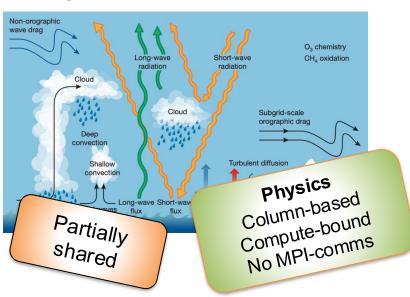
Cray XC30

Atos Sequana XH2000

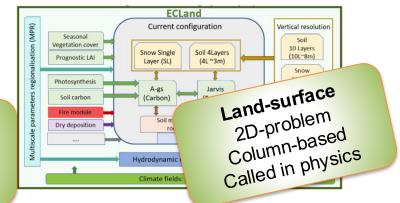

Running IFS on EuroHPC and external systems






The challenge of adapting the IFS forecast model (to GPU)

Dynamical core



- Large Fortran code base
 - ~ 1 MLoC for forecast
 - > 5 MLoC, 15k files total (with DA)
- Many computational patterns
 - No overarching abstraction
 - No single optimisation strategy
- Shared code and data structures
 - Météo-France and ACCORD
 - Shared underlying data model

Physical parametrisations

Land surface model

Ocean Model

Wave Model

Wave
Horizontal stencil
Column-based
MPI-comms (local)

Preparing IFS for GPUs and multiple HPC systems

Modularisation

ecTrans

Spectral Transform

ecRad

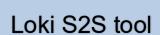
Radiation model

ecWAM

Wave model

ecLand

Land surface model



GPU-enabled data structures

Generalised data transfer API

Atlas

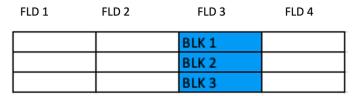
FIELD API

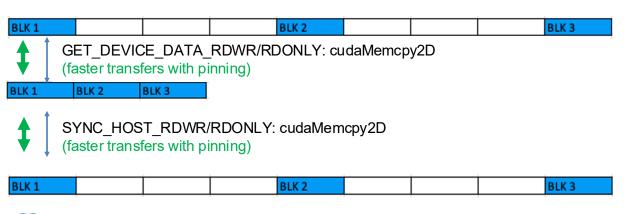
Optimise compute kernels

Schedule data transfers

Source-to-source

Flexible data structures for complex memory hierarchies


FIELD API: Initial adaptation to allow GPU-offload via OpenACC / OpenMP


- Jointly developed by Météo-France and ECMWF
- Object-oriented data structures to encapsulate memory placement of field arrays
- GPU support: Vendor-agnostic data offload to GPU devices
- GPU optimization: Dedicated CUDA backend for faster transfers and memory pinning
- For more, see poster by J. Ericsson!

Host multi-field buffer

non-contiguous FLD 3 host memory

contiguous FLD 3 device memory

REAL :: BUFFER(NPROMA,4,NBLKS)
REAL, CONTIGUOUS, POINTER :: D_PTR(:,:)
CLASS(FIELD 2RB), POINTER :: F

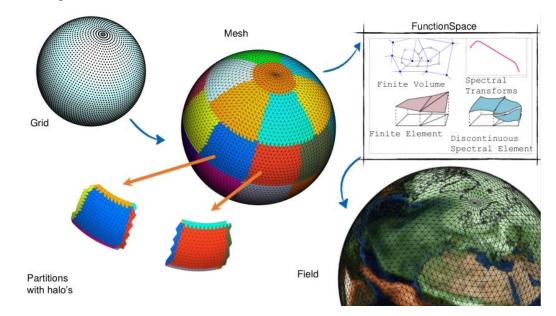
CALL FIELD_NEW(F, DATA=BUFFER(:,3,:))

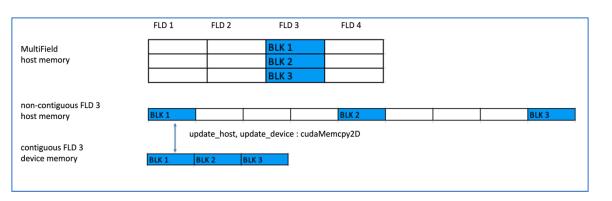
CALL F%GET_DEVICE_DATA_RDWR(D_PTR)

[compute on device using D_PTR]

CALL F%SYNC_HOST_RDWR()

Flexible data structures for complex memory hierarchies

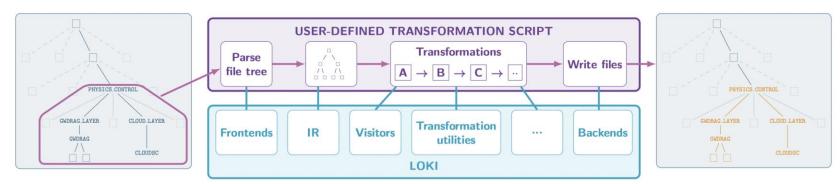

Atlas – A library for NWP and climate modelling [1]


- Modern C++ library with Fortran interfaces
- Data structures library for numerical algorithms
 - Interpolation, remapping, spherical harmonics
 - Gradient, divergence, Laplacian operators

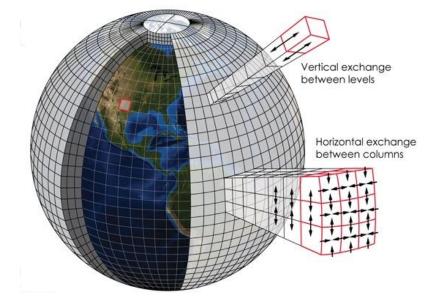
Increasing GPU-awareness!

- CUDA enabled storage and data transfers
- IFS-style memory blocking for host/device

See later talk "Flexible GPU offloading strategies with the Atlas library using Pluto" by W. Deconinck



[1] W. Deconinck et al. "Atlas: A library for numerical weather prediction and climate modelling". Computer Physics Communications, 2017.



Loki – A source-to-source translation tool

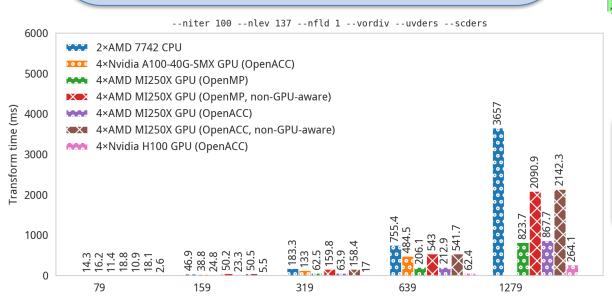
Loki: Source-to-source translation package written in Python

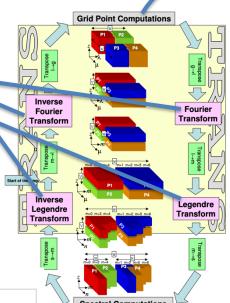
- Library of tools and APIs to build source transformation recipes
- Recipes depend on "Single Column" formatted code [2]
 - Additional coding conventions that allow tools to re-optimize code for GPUs via loops flips and changing variable declarations
 - SIMD to SIMT conversion with IFS-specific memory layout (memory blocking with packed arrays and sparse slices)
- See next talk "<u>Cross-platform optimisation for GPUs of</u> various flavours (the low-level tech overview)" by A. Nawab

[2] V. Clement et al. "The CLAW DSL: Abstractions for Performance Portable Weather and Climate Models". PASC, 2018.

GPU-porting status of IFS forecast benchmark

Model component		Porting method	CPU run time	GPU (Nvidia)			GPU (AMD)		
				Status	Performance	Release Cycle		Status	Perf.
Dynamical core	Spectral Transform	Manual, OpenACC	16%	Done	Good			Done	Good
	Grid point dynamics	FIELD API + Loki	10%	Done	Optimising	50r3			
	Semi-Lagrangian	Manual + Loki	12%	Done	Optimising	50r3			
	Semi-Implicit	Manual + Fxtran(MF)	2%	Integrating		50r3			
Physics	EC-physics	FIELD API + Loki	30%	Done	Optimising	49r3	50r3	Porting (AOMP)	
	Surface model	FIELD API + Loki		Done	Good	49r3	50r3		
	Radiation	Manual / Loki	5%	Done	Loki / Atlas	49r3	50r3	Integrating	
	Perturbation	Manual + Loki	N/A	Done	Good				
Wave model	Dy-core	Manual + Loki	8%	Done Good	Cood			Integrating	AOMP-
	Source term	FIELD API + Loki			Good				Latest
Atmospheric composition		FIELD API + Loki	N/A						
Diagnostics	DDH, FULLPOS	CPU, or manual	N/A						
Ocean model (NEMO)		Psyclone , Manual	6%	Porting (Cray, AOMP)					


Complete Demonstrated Working on it External issues Not started yet Out of scope

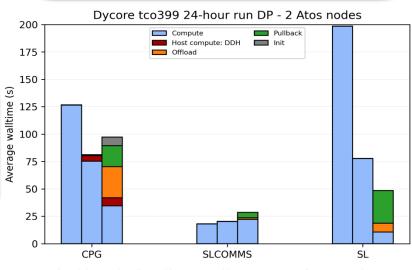


Dynamical core and transforms

EcTrans: Spectral transform library

- Separate CPU and GPU code paths
- GPU optimisations include GPU-aware MPI, use of optimized math and graph libraries
- Available as standalone test and benchmark
- <u>Talk by L. Mosimann</u> + poster by S. Hatfield!

Work in progress

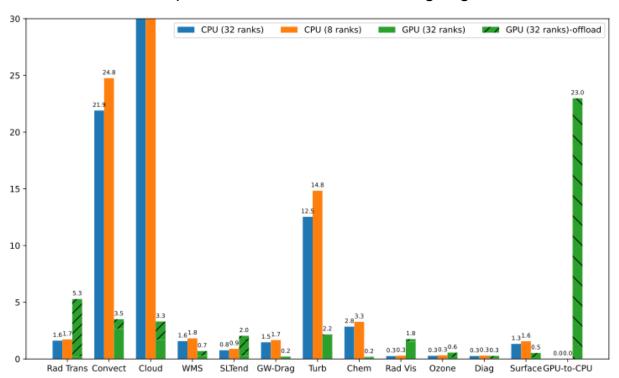

- Semi-Implicit (integration)
- Mass fixers (optional)

Grid-point computation (CPG)

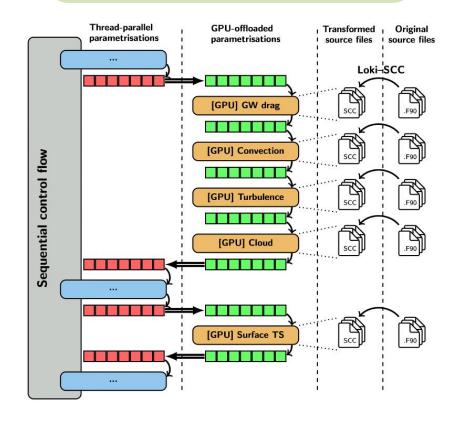
- Loki: Adapted single-column recipe
- Field-API: Device-resident allocations

Semi-Lagrangian advection

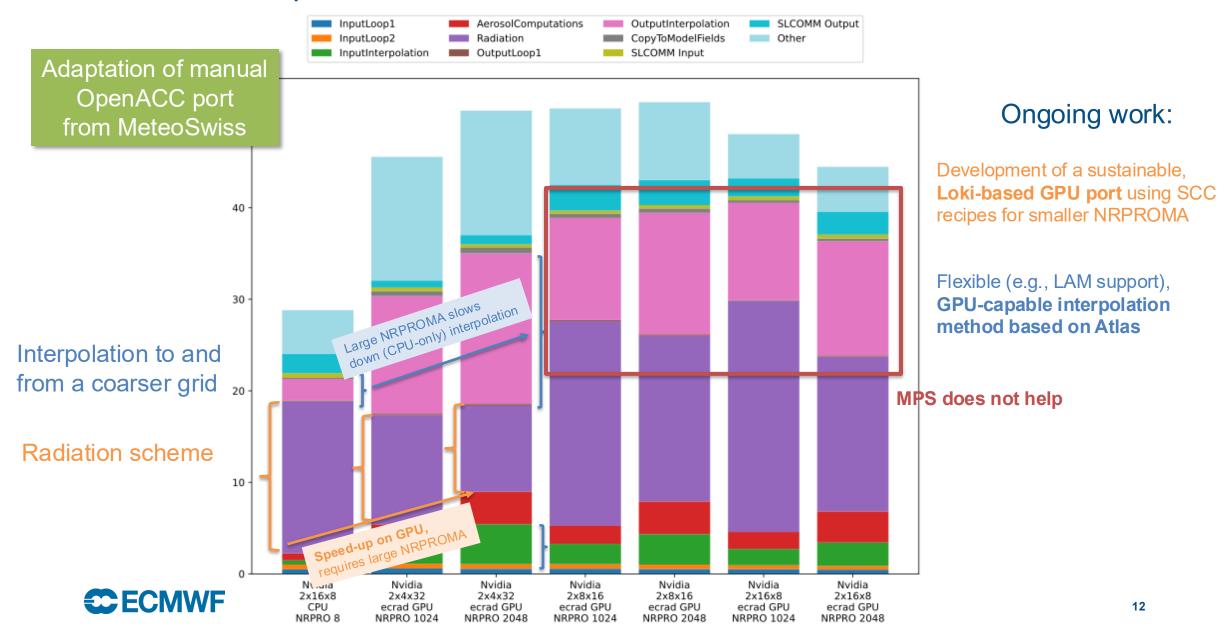
- Loki: Adapted single-column recipe
- Field-API: Buffer allocations on device and interfacing to GPU-aware MPI


Left to right: CPU baseline, Loki opt. CPU, Loki opt. GPU. CPU config: 32 MPI ranks, 8 OMP threads, NPROMA 16. GPU config: 8 MPI ranks, 32 OMP threads, NPROMA 32.

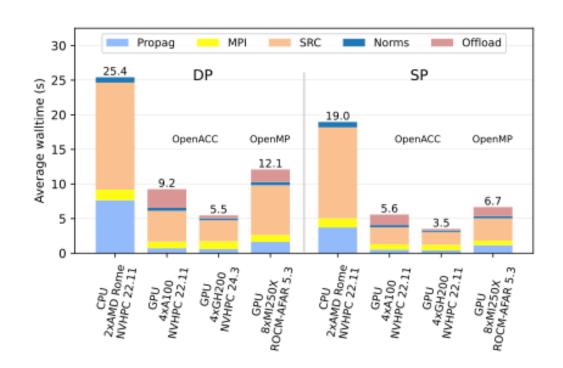
GPU-adaptation of IFS physics package

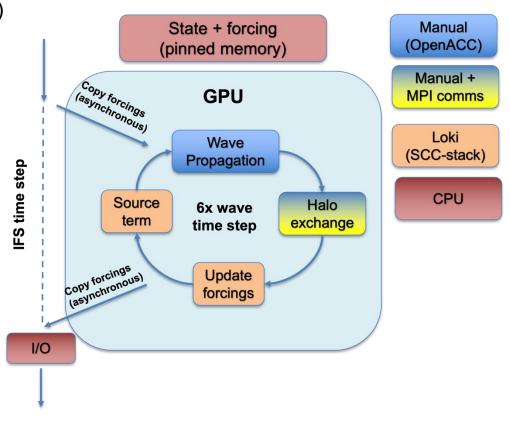

Auto-generated GPU code via Loki recipes

- Optimization passes programmed as pipelines
- Full physics package for Cy49r1 and Cy50r1
- More optimization and automation ongoing


GPU development cycle

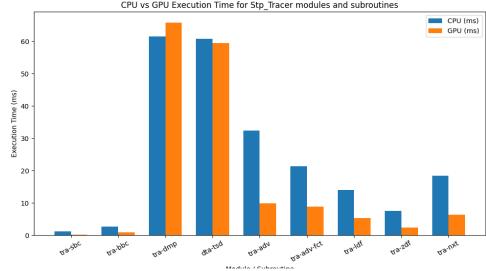
- Break single parallel loop into many
- Adapt kernels individually, verify!
- Use Loki + Field-API to offload
- Remove data transfers to GPU

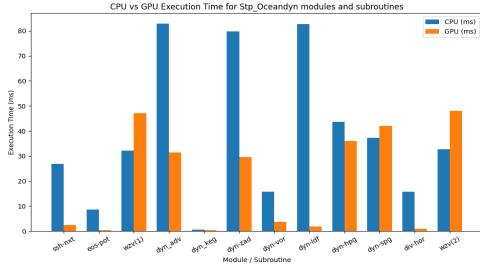



ecRad - atmospheric radiation scheme

EcWAM - Open-source standalone wave model

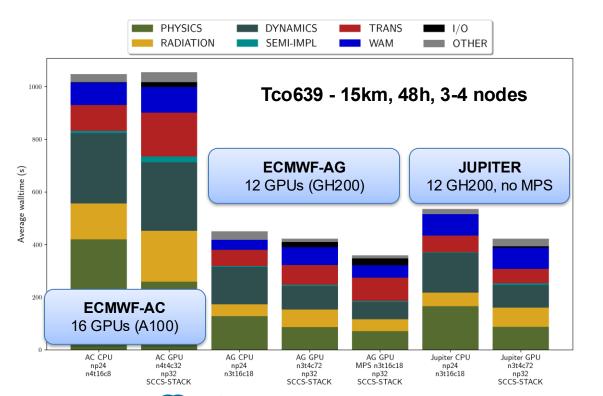
- Released under Apache-2 license on Github
- GPU support via Field-API and Loki (OpenACC & OpenMP)
 - Optimised on Nvidia and AMD GPUs
- See later talk by F. Di Sante and poster by A. Nawab!

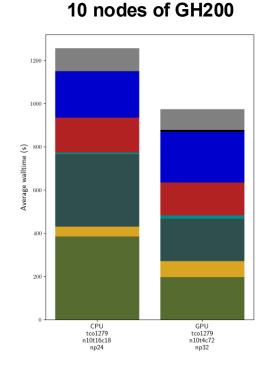




GPU-adaptation of NEMO ocean model

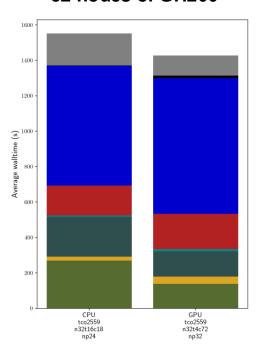
- Initial collaboration with STFC on PsyClone for NEMO-5
 - Good progress towards long-term sustainable GPU-port
- New focus: Porting of NEMO-4 (OCE & LBC)
 - Approach: Incremental manual via OpenACC
 - Goal: Maximize GPU utilization
 - Progress on ported Modules (ORCA1):
 - Ocean diagnostics (DIA), tracer (TRA), diffusion (LDF), forcing & data (DOM), dynamics (DYN)
 - In Progress: ZDF (Vertical Diffusion) modules
- Up next: Testing higher resolution case: ORCA025
- Up next: Performance profiling & scalability tests
- Open question: Long-term sustainable multi-arch version?




GPU-adapted IFS benchmark - putting it all together

Latest RAPS release – internal cycle Cy50r3

- High device residence (>85%), optimization ongoing
- Initial runs competitive despite wasteful data transfers!
 - GPU over-subscription via MPS very beneficial!


Tco1279 - 9km, 48h

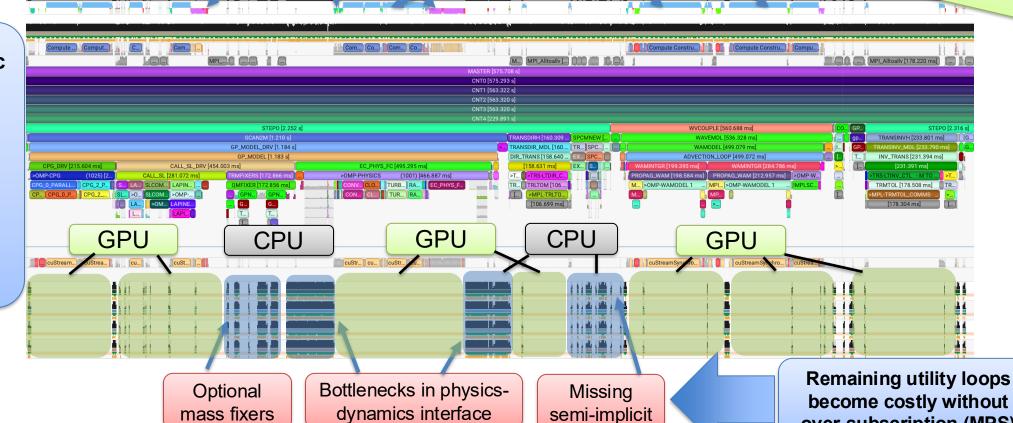
GPU-enabled IFS

- Competitive on Grace-Hopper
- Under-optimised data transfers
- Derived from optimised CPU
- Latest science cycle (Cy50r1)

Tco2559 – 4.5km, 12h 32 nodes of GH200

GPU-adapted IFS benchmark – optimization ongoing

More throughput gains expected


Redundant data transfers High device-residency; fast compute but more improvements coming

Optimisation performed on latest science, adjacent to operational CPU code!

Atmospheric timestep

9k resolution 10 nodes GH200 **JUPITER**

> Incl. wave No MPS

over-subscription (MPS)

Progress on GPU adaptation of IFS

Sustainable GPU adaptation alongside scientific development

- Close collaboration with member state and strong synergies with Destination Earth
- Enable continuous adaption and performance optimization for HPC architectures

Focus on refactoring and software infrastructure

- Increased modularisation and use of library interfaces
- GPU-enabled data structures and preparation towards Atlas
- Source-to-source code transformation via IFS-specific recipes

Progress: Most components offloaded and optimization ongoing

- GPU offload for >85% of atmospheric time step, based on latest science (Cy50r1)
- Optimisation ongoing on JUPITER and in-house GPU partitions

Thank you! Any questions?

