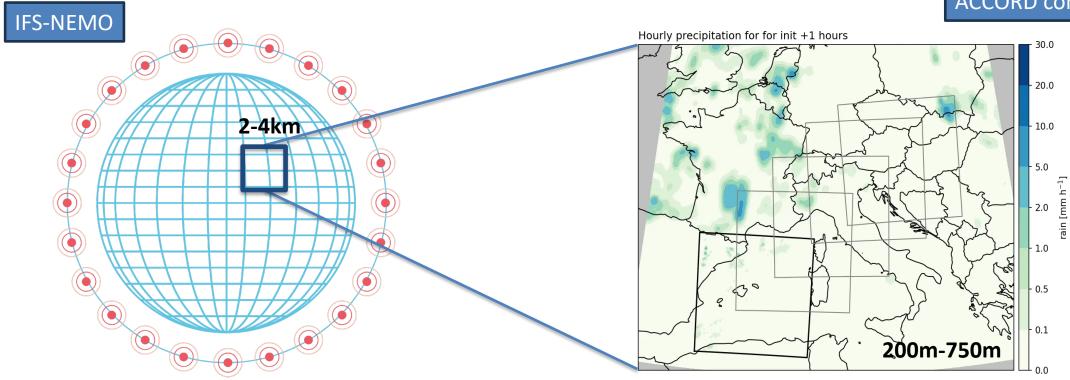


TWO HIGH PRIORITY DIGITAL TWINS

Weather-Induced Extremes
Digital Twin

Climate Change Adaptation
Digital Twin

Observations

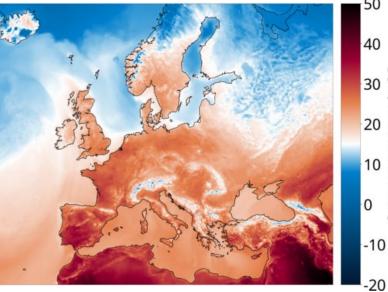


WEATHER-INDUCED EXTREMES DIGITAL TWIN

Continuous global component 4-days ahead, 2-4km

On-demand regional component over Europe 2-days ahead, 200m-750m

ACCORD configuration


CLIMATE CHANGE ADAPTATION DIGITAL TWIN

3 Models:

- **ICON**
- **IFS-NEMO**
- **IFS-FESOM**

IPCC AR6 (2021), 100km

Climate DT, 5km

Destination Earth Climate Adaptation Digital Twin Consortium Procured by ECMWF. List of participant institutions in Phase I

Institution	Country
CSC - IT Center for Science (Contract lead)	Finland
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI)	Germany
Barcelona Supercomputing Center (BSC)	Spain
Institute of Atmospheric Sciences and Climate (CNR-ISAC)	Italy
German Climate Computing Centre (DKRZ)	Germany
National Meteorological Service of Germany (DWD)	Germany
Finnish Meteorological Institute (FMI)	Finland
Max Planck Institute for Meteorology (MPI-M)	Germany
Catholic University of Louvain (UCL)	Belgium
Helmholtz Centre for Environmental Research (UFZ)	Germany
University of Helsinki (UH)	Finland
Polytechnic University of Turin (POLITO)	Italy
Hewlett Packard Enterprise (HPE)	France

Historical simulation

Future projection

Control simulation

Storyline simulation

2m temperature in

CLIMATE DT SIMULATIONS

IFS-NEMO 4.4km/8km 20-year projection: 2020-2039

- 215 LUMI-C nodes
- 823TB fields output, 2.5PB model restart files
- 230 forecast days per day throughput (on a good day)
- Feb 15 2024 April 15 2024
- 488 two-week chunks
- 2 hours per two week chunk
- 175.000 CSC LUMI-C node hours

https://destine.ecmwf.int/climate-changeadaptation-digital-twin-climate-dt/#simulations

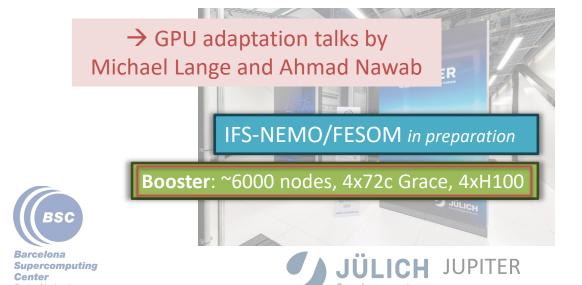
Type of simulation	Model	Resolution	Period
Future projection	ICON	5km across Earth system components	2020-2039
Future projection	IFS-NEMO	4.4 km atmosphere, 1/12 ocean/sea-ice	2020-2039
Future projection	IFS-FESOM	4.4 km atmosphere, 5km ocean/sea-ice	2020-2039
Future projection (nextGEMS)	IFS-FESOM	9 km atmosphere, 5km ocean/sea-ice	2020-2049
Historical simulation	ICON	10km atmosphere, 5km ocean/sea-ice	1993-2019
Historical simulation	IFS-NEMO	9 km atmosphere, 1/12 ocean/sea-ice	1990-2001
Historical simulation (nextGEMS)	IFS-FESOM	9 km atmosphere, 5km ocean/sea-ice	1990-2019
Control simulation	IFS-NEMO	9 km atmosphere, 1/12 ocean/sea-ice	1990-2004
Control simulation	IFS-FESOM	9 km atmosphere, 1/12 ocean/sea-ice	1990-2006
Storyline simulation past climate	IFS-FESOM	9 km atmosphere, 5km ocean/sea-ice	2017-2024
Storyline simulation present climate	IFS-FESOM	9 km atmosphere, 5km ocean/sea-ice	2017-2024
Storyline simulation future climate	IFS-FESOM	9 km atmosphere, 5km ocean/sea-ice	2017-2024

EUROHPC SUPERCOMPUTERS

DIVERSE HARDWARE PLATFORMS

LUMI-C: 2048 nodes, 2x64c AMD EPYC (Milan) LUMI-G: 2978 nodes, 1x64c Trento, 4xMI250X

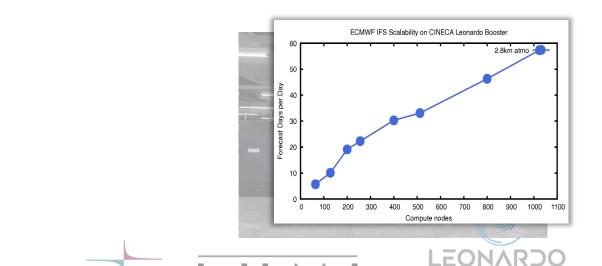
GPP: 6408 nodes, 2x56c Intel Sapphire Rapids ACC: 1120 nodes, 2x40c Intel SPR, 4xH100



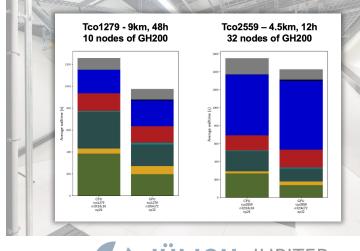
WHAT RUNS WHERE

IFS-NEMO (Extremes DT) IFS-NEMO (Climate DT, phase 1) **IFS-FESOM (Climate DT)**

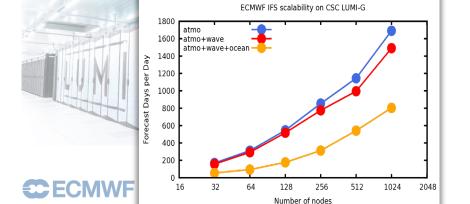
LUMI-C: 2048 nodes, 2x64c AMD EPYC (Milan) LUMI-G: 2978 nodes, 1x64c Trento, 4xMI250X

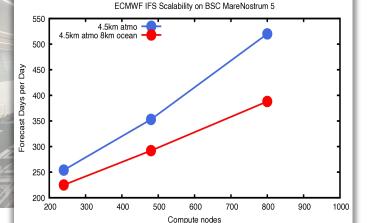

IFS-NEMO (Climate DT) **IFS-FESOM (Climate DT)**

GPP: 6408 nodes, 2x56c Intel Sapphire Rapids ACC: 1120 nodes, 2x40c Intel SPR, 4xH100

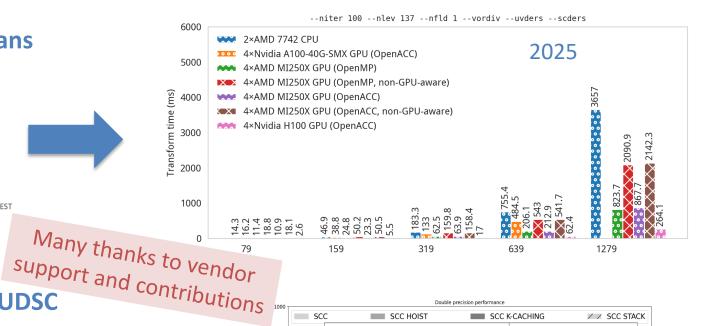


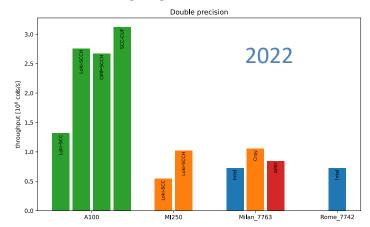
DEMONSTRATING SCALABILITY ACROSS PLATFORMS



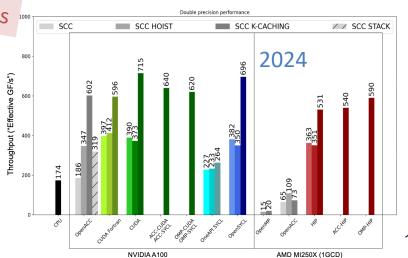


→ Talk by Ioan Hadade

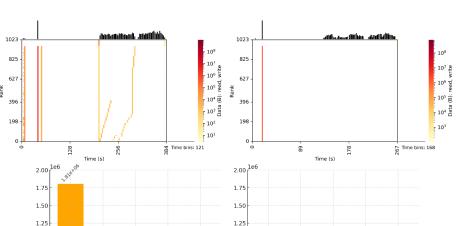


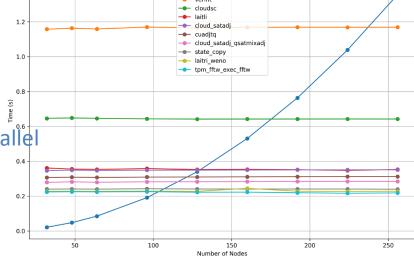

...BUT NOT WITHOUT PERFORMANCE CHALLENGES

Evolution of spectral transforms library ecTrans



Evolution of cloud microphysics scheme CLOUDSC



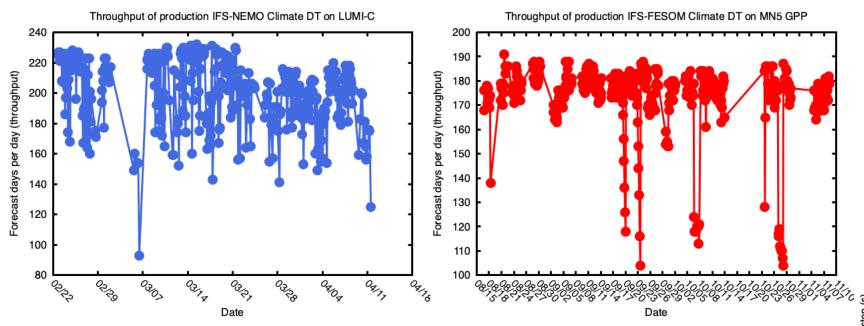

...BUT NOT WITHOUT INITIALISATION CHALLENGES

Repeated and regular performance profiling and assessment is essential

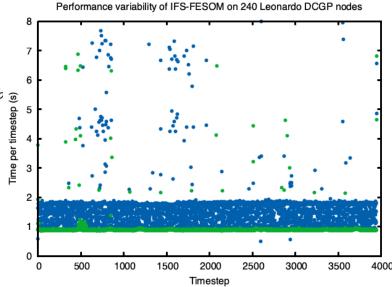
→ Talk by Fabio Di Sante (CINECA)

Time Spent on haviest routines vs number of nodes for scorep_tco2559l137, MPI excluded

Impact	of	read	ing	eccod	es	definitions
	1	from	file	or me	m	fs


	List of most expensiv	ve STDIO read operations	
Time value (s)	Bytes read	File name	
22.228870	1.52e+10	ICMCLi9tkINIT	
10.22	8.24e+09	ICMGGi9tkINIUA	
9.49	1.52e+10	specwavein	
5.08	4.52e+05	local Definition Number. 98. table	As
3.79	2.88e+06	2.98.128.table	
2.95	3.77e+06	4.0.table	ba
2.43	5.48e+05	3.1.table	

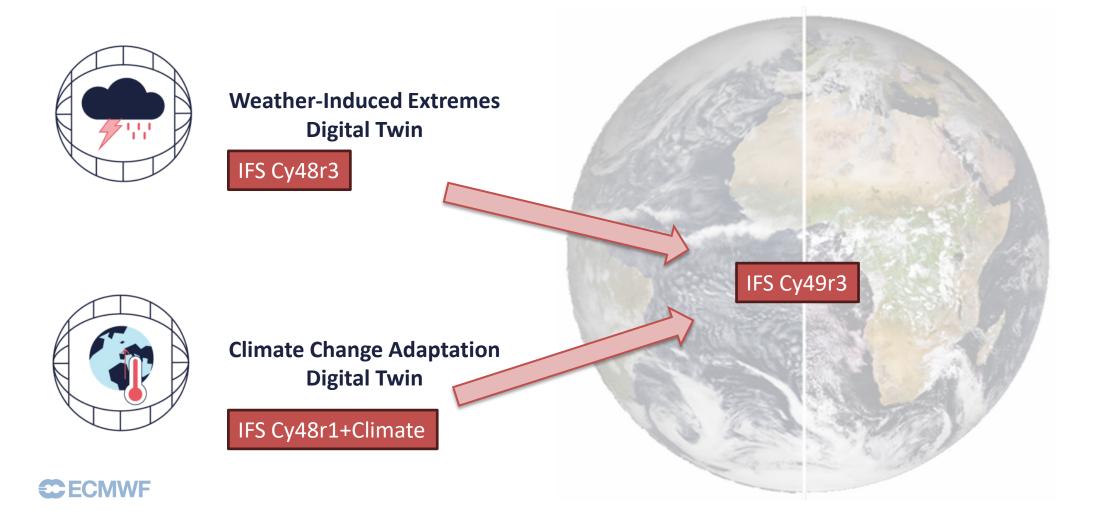
0.75



...BUT NOT WITHOUT OPERATIONAL CHALLENGES

Throughput of Climate DT integrations on LUMI and MN5

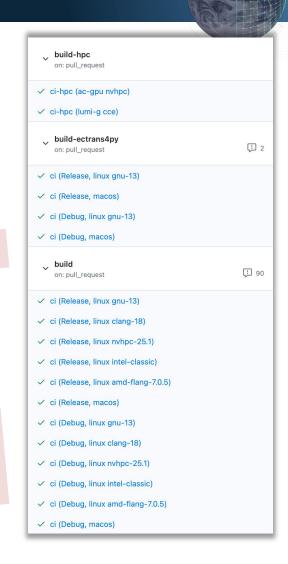
Performance variability on LEONARDO



CONVERGENCE OF CODE VERSIONS

#34 was successful – Cha Stages & jobs **Build stage** Atos FFSOM Intel 2021.4.0 Atos Intel 2021.4.0 Atos NEMO Intel 2021.4.0 2021.10.0 MN5-GPP NEMO Intel 2021.10.0 Run stage TC0399 Atos NEMO Intel 2021.4.0 Atos NEMO Intel 2021.4.0 TC079 **TCO79** TC079 TC079 TC079 MN5-GPP FESOM Intel2021.10.0 TCO79

2021.10.0 TCO79


TO KEEP IT ALL RUNNING...

Ongoing evolution of per-component testing and code coverage

→ FORGE talk by Michael Lange

Ongoing evolution of cross-platform testing, improving compiler and hardware coverage

> Access policies, identity management and authentication methods need to allow for CI pipelines!

...AUTOMATED TESTING IS ESSENTIAL

TO KEEP IT ALL RUNNING...

Lucian Anton

Ahmad Nawab

Ioan Hadade

Fatemeh Pouyan

Johannes Bulin

Johan Fricsson

Marieke Plesske

Michael Lange

Michael Staneker

Slavko Brdar

Sam Hatfield

Willem Deconinck

Olivier Marsden

Patrick Gillies

...A SKILLFUL TEAM IS KEY!

Zbigniew Piotrowski

