Machine learning validation

Evaluating ML models and avoiding leakage

Julian Kuehnert, Jesper Dramsch

ECWMF Bonn

julian.kuehnert@ecmwf.int

Motivation Memorise Data Retrieve Things We Know Derive Mechanisms Generalize

Motivation

How do we ensure our models work on unseen data in the future?

Outline

- Basic Validation Strategies
- Imbalanced and Heterogeneous Data
- Correlated and Connected Data
- Data, Target, and Concept Drift
- Baseline Methods and Model Verification
- Practical considerations in Snooping and Data Leakage

Basic Validation Strategies

Obtaining Data to Test On

Labelled Dataset

Training Data

Validation Data

Training Data

Validation Data

Test Data

Validation on Small Dataset

Labelled Dataset

Training Data

Validation Data

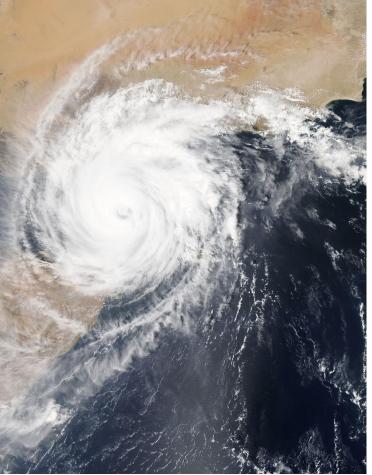
Training Data

Validation Data

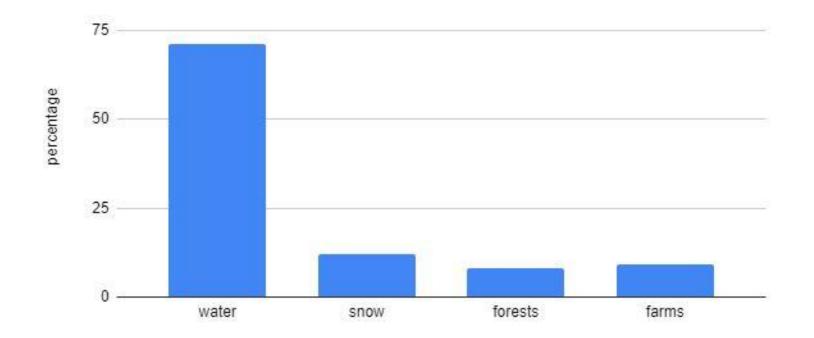
Test Data

Cross-Validation

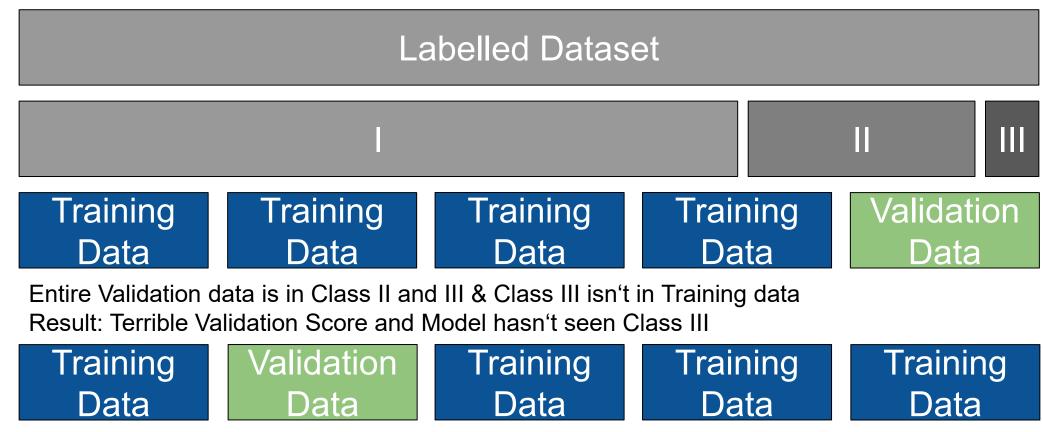
Labelled Dataset **Validation** Training Training Training **Test Data** Model 1 Data Data Data Data Validation Training Training Training **Test Data** Model 2 Data Data Data Data Validation Training Training Training **Test Data** Model 3 Data Data Data Data Validation Training Training Training **Test Data** Model 4 Data Data Data Data Fold 1 Fold 2 Fold 3 Fold 4


Imbalanced and Heterogeneous Data

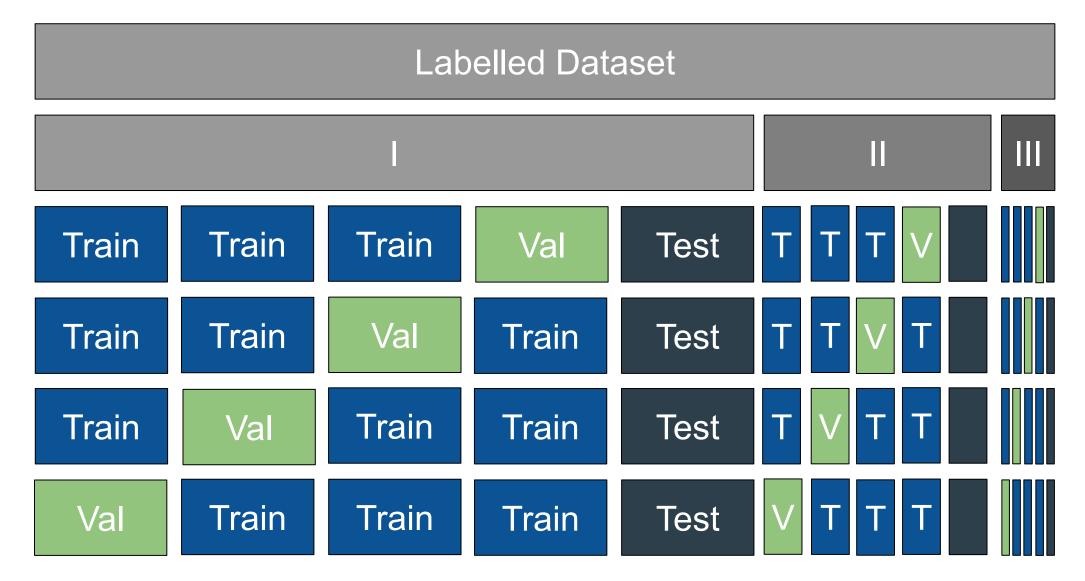
Examples for Imbalanced Data



Class Imbalance


Earth's surface cover

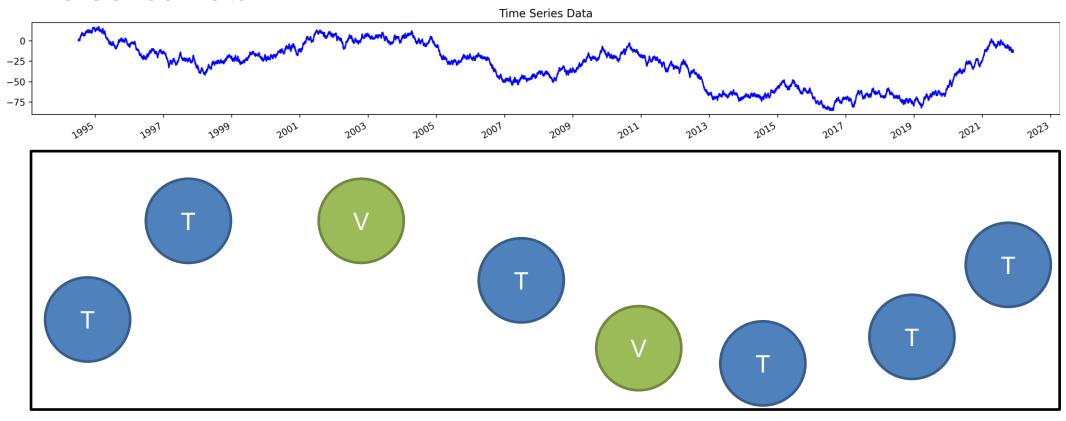
Why not use Random Sampling like before?



Entire Validation data is in Class I

Result: Great Validation Score but no validation of Class II & III at all

Stratification for Imbalanced Data



Correlated and Connected Data

Time Series Data

- Random Splits on Time Series Data equates to Interpolation
- Bad on standard time series problems
- Devastating on forecasting problems

Validation on Time Series Data

Time Series Dataset Validation **Training Data Test Data** Data Validation **Test Data Training Data** Data Validation Training Data **Test Data** Data Validation Training Data **Test Data** Data

Validation of Geospatial Data

- Geospatial Data Examples
 - Stations
 - Satellite Data
 - Weather Radar
- Geospatial Data is spatially correlated
- Problems with random split of data:
 - Clustering of Validation Locations
 - Overlap of Validation and Training Locations

Validation of Geospatial Data

- Geospatial Data Examples
 - Stations
 - Satellite Data
 - Weather Radar
- Geospatial Data is spatially correlated
- Problems with random split of data:
 - Clustering of Validation Locations
 - Overlap of Validation and Training Locations

Data, Target, and Concept Drift

Data Drift

- Shifts in Input Data
- Examples
 - Global Temperature through Climate Change
 - Land Cover Change through Urbanisation
- Mitigation Strategies
 - Monitoring of Input Data Distribution
 - Continuous, e.g. Kolmogorov-Smirnov test
 - Categorical, e.g. Chi-squared test
 - Automatic Retraining of ML Models
 - Define Threshold for Monitored Metrics
 - Implement periodic retraining

Target Drift

- Shifts in the Target / Label Data
- Examples
 - Reclassification from Human Labellers
 - Regulatory Changes
- Mitigation Strategies
 - Monitoring of Output Data Distribution
 - Automatic Retraining of ML Models
 - Anticipate Class Changes if Probable
 - Set Up Pipelines for Label adaption
 - Make it Easy to Change Label Processing

Concept Drift

- Shift in underlying "connection" between input data and labels
- Example
 - Shopping Behaviour in 2020
 - Radiation Models using Rayleigh Scattering then changing Wavelengths
- Devastating for Machine Learning
- Mitigation Strategies
 - Monitor raw Model Metrics
 - Set up Alerts for Deterioration
 - Be prepared to take Model out of Production

"The true Test Set is in Production."

Baseline Methods and Model Verification

Baseline Model Verification

- Compare Machine Learning Results to known Baseline
- Build Baseline ML Models to assert Overfitting
- Consult Domain Experts with Feature Importances
- Test on Completely Unseen Data

Practical considerations in Snooping and Data Leakage

Data Leakage

Information Available at Training Time

Information Available at Test Time

Example from Pascal-VOC image prediction

Data Leakage Examples

- Labels or Proxy Features for Labels in Training Data
 - "Monthly Salary" in Training to predict label "Yearly Salary"
 - "Num Late Payments" in customer data to model a loan decision
- Normalisation on Validation & Test Data
- Duplicate Rows in Training and Test sets
 - Data Augmentation
 - Oversampling or SMOTE on Imbalanced Data
- Manual Preprocessing of Entire Data based on Known Properties

Conclusion

Conclusion

- Split Data Immediately into
 - Training
 - Validation
 - Test
- Try Cross-validation for Best Results
- Beware of Correlated Data when Splitting
 - Time Series & Geospatial Data are Always Correlated
- Use MLOps to Mitigate Drift
- Build Baseline Models and Consult Experts
- Beware of Data Leakage

