Neural networks and deep learning

Training course: Machine learning for weather prediction

Mario Santa Cruz Lopez

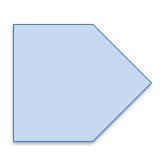
ECMWF

mario.santacruz@ecmwf.int

Back to 2012

Machine learning was already being used for a variety of tasks:

- Spam recognition
- Fraud detection
- Recommendations



- Feature engineering is manual, domain-specific, and timeconsuming.
- It doesn't scale with data (performance & cost)

Text

Image/Videos

Inconvenients

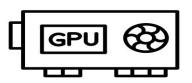
- Performance plateaus as complexity grows.
- Hard to generalize across raw data types
- Decision Trees / Random Forests perform well on tabular data but poorly on high-dimensional data

At the same time

GPUs were originally developed to <u>render 3D</u> graphics efficiently in video games.

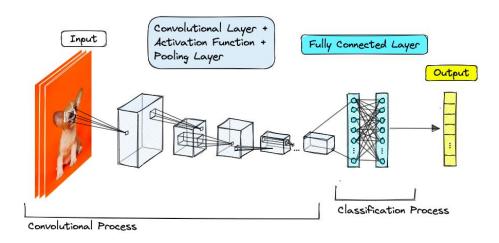
Handling millions of pixels and complex visual effects in parallel.





5

ImageNet

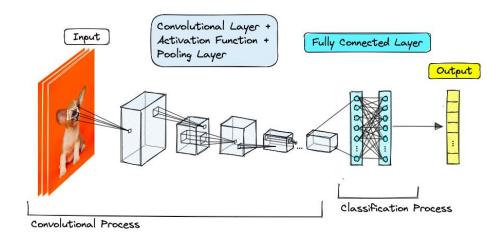


- 1.2 million images dataset
- 1000 categories

Before 2012 ...

• The error rate hovered around **26%**

ImageNet



- 1.2 million images dataset
- 1000 categories

Before 2012 ...

• The error rate hovered around **26**%

In 2012 ...

- Developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (University of Toronto).
- Introduced AlexNet, neural network trained with GPUs.
- It dropped the error rate from ~26 % to ~16%.

History of major breaktroughs

2012 - AlexNet wins the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) using a deep convolutional neural network.

2016 - AlphaGo (by DeepMind) defeats a top human player in Go (2016)

2017 - Introduction of the Transformer architecture model (by Google Brain) for natural language processing.

2021 - AlphaFold (DeepMind) demonstrates highly accurate protein folding predictions.

2022 - ChatGPT (based on GPT-3.5) publicly launched and quickly becomes viral.

History of major breaktroughs

2012 - AlexNet wins the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) using a deep convolutional neural network.

2016 - AlphaGo (by DeepMind) defeats a top human player in Go (2016)

2017 - Introduction of the Transformer architecture model (by Google Brain) for natural language processing.

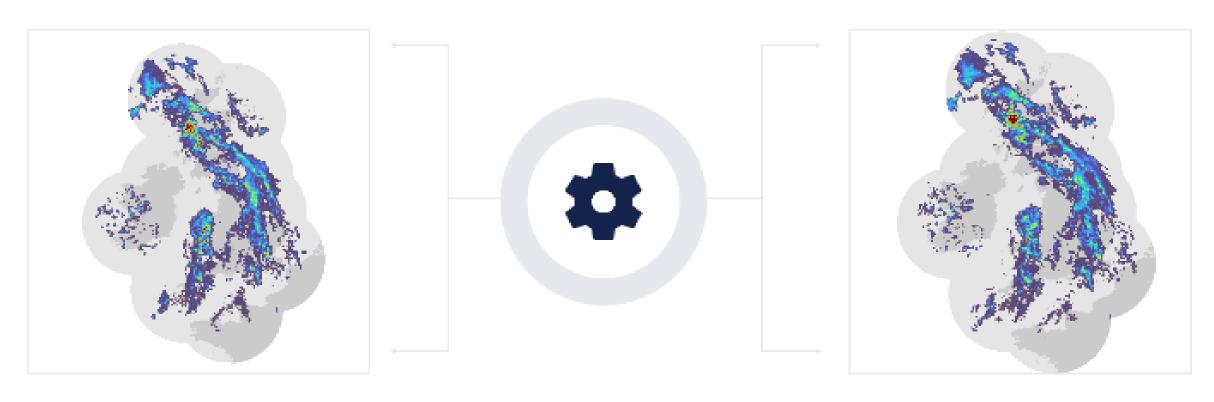
2021 - AlphaFold (DeepMind) demonstrates highly accurate protein folding predictions.

2022 - ChatGPT (based on GPT-3.5) publicly launched and quickly becomes viral.

Feb 2025 - AIFS Single becomes an operational model.

Deepmind Nowcasting predicting the future

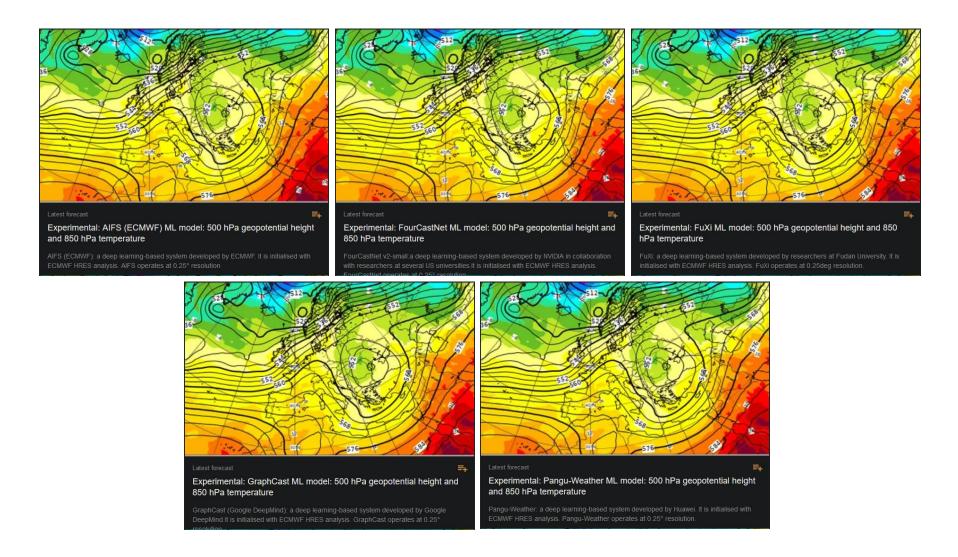
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Context Past 20mins Deep Generative Model of Rain

Nowcast Next 90mins

The Rise of Data-Driven Weather Forecasting



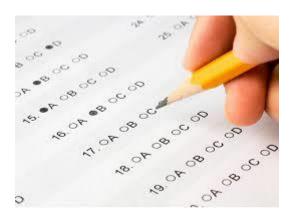
Outline

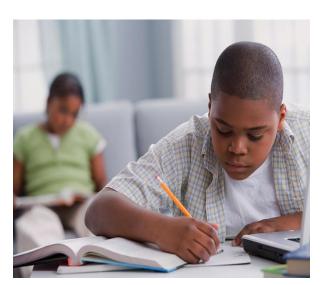
- Learning process
- Dense networks
- Neural network training and GPUs
- Convolutional neural networks
- Recurrent networks
- Transformers

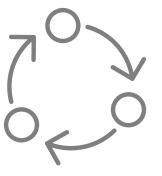
Homework



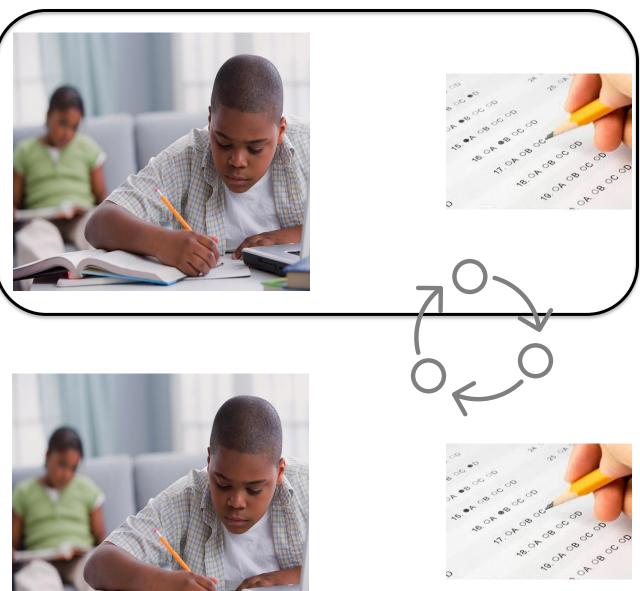
Review your homework

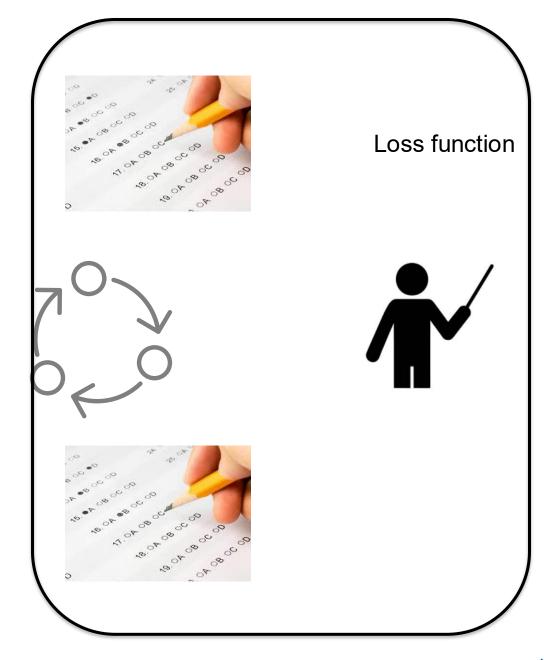


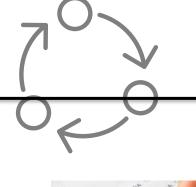




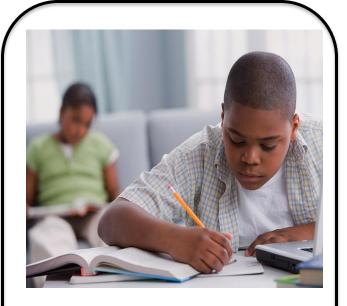
Forward pass





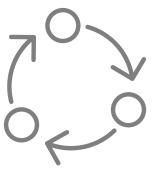


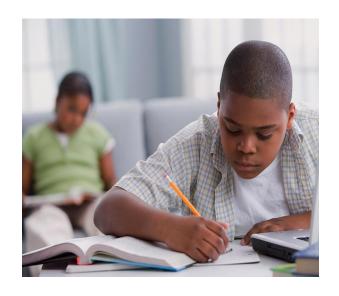
Backward pass



Parameters update







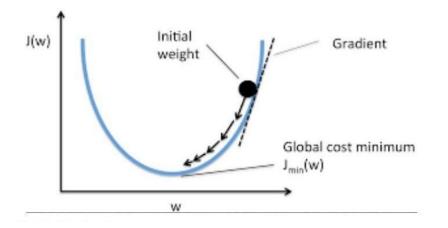
The training loop

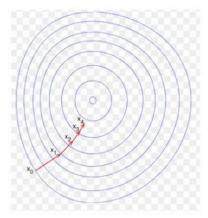
```
for epoch in 0,1, ..., 100:
# Forward pass
pred = model(input)
# Loss function
loss = loss(pred, target)
# Backward pass
gradients = model.backward(loss)
# Update model weights
model.update_weights(gradients)
```


The training loop

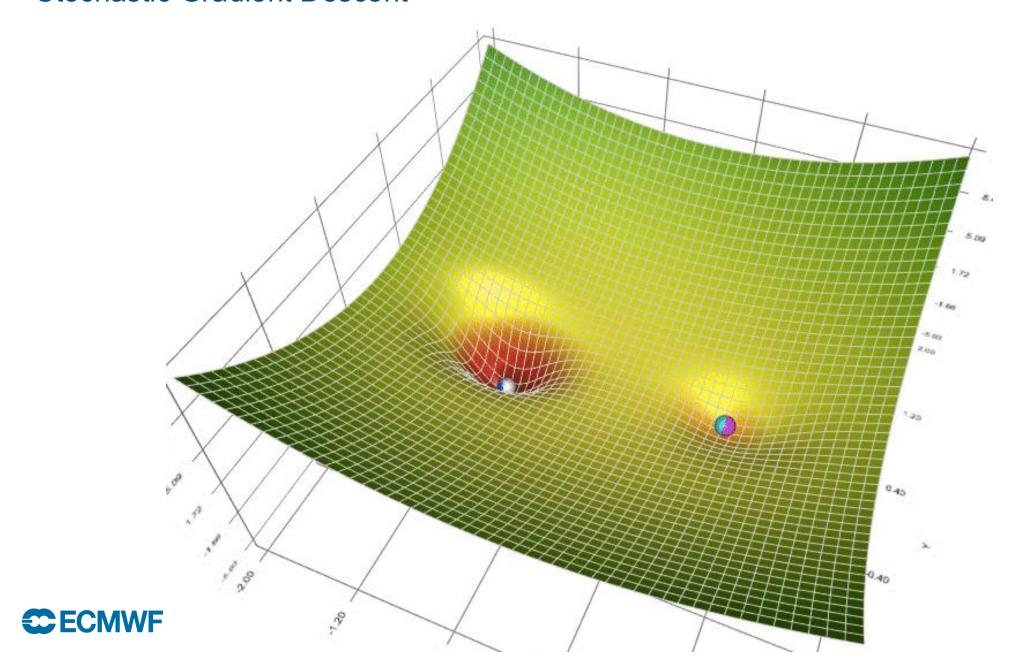
```
for epoch in 0,1, ..., 100:
# Forward pass
pred = model(input)
# Loss function
loss = loss(pred, target)
# Backward pass
gradients = model.backward(loss)
# Update model weights
model.update_weights(gradients)
```

Stochastic Gradient Descent



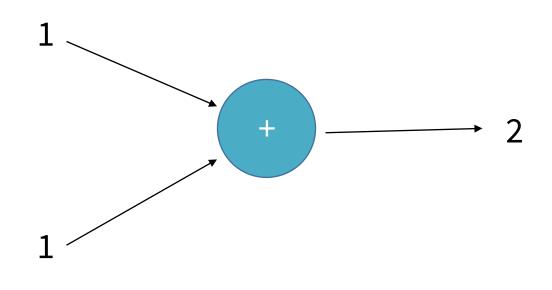


Stochastic Gradient Descent

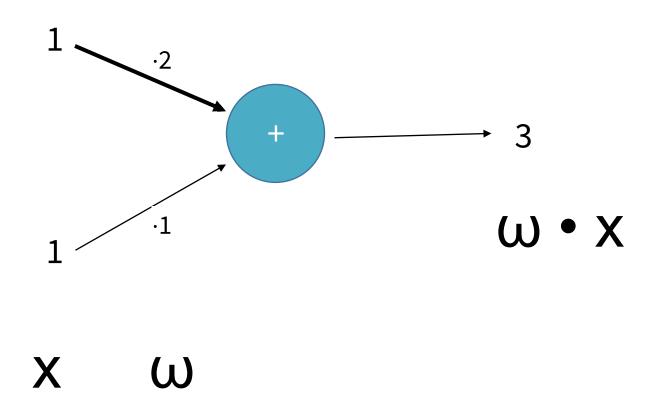


Dense networks

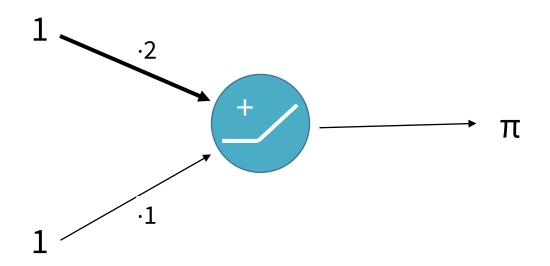
A Simple Neuron for Addition



A Simple Neuron – Changing Weights

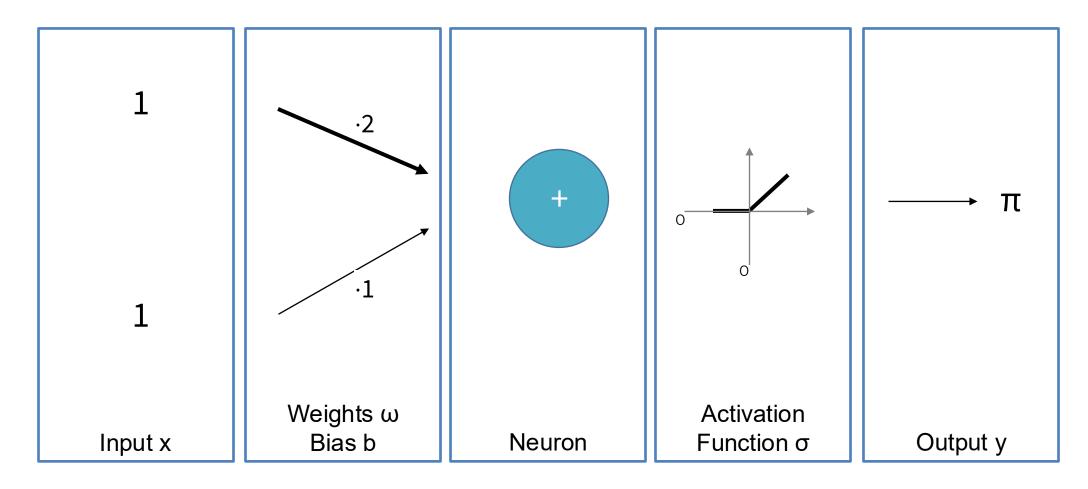


A Simple Neuron – Activation Function



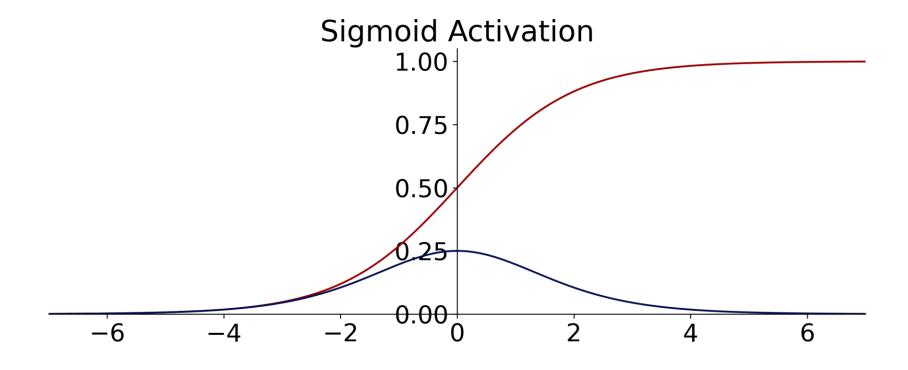
non-linear function

A Simple Neuron – Deconstructed

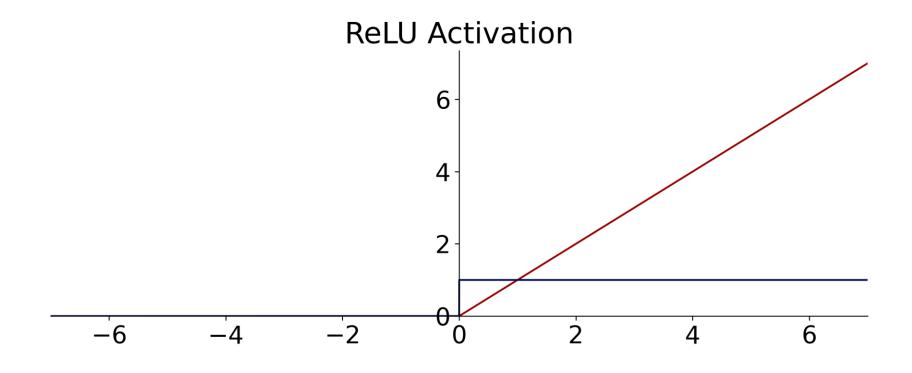


$$y = \sigma (\omega \cdot x + b)$$

Classic Activation Function

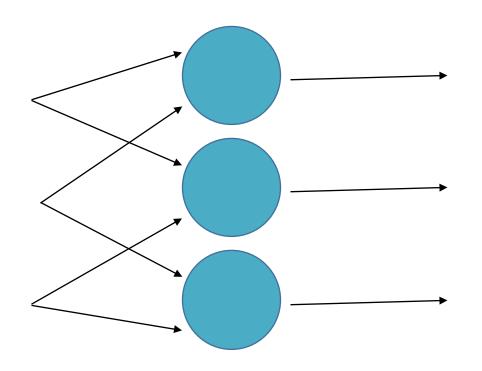


Modern Activation Functions

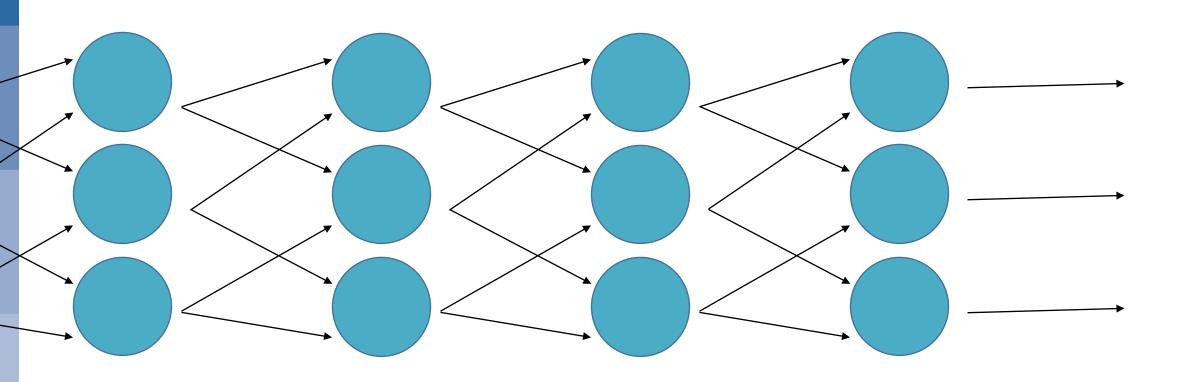


and its variations: LeakyReLU, PReLU, ELU, GELU, SELU, ...

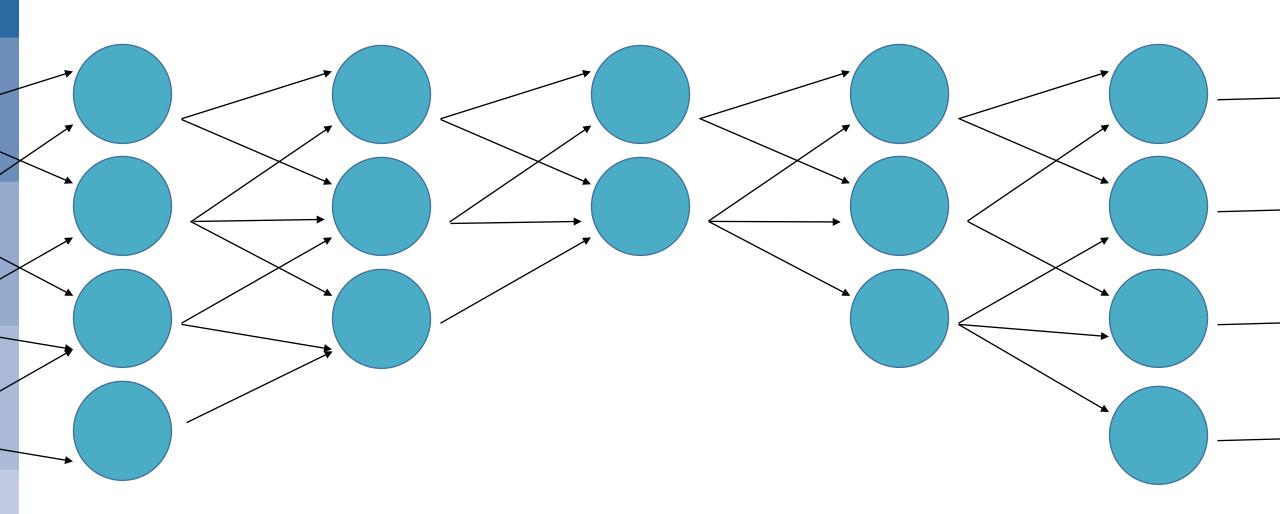
From the neuron to the layer



A Deep Neural Network

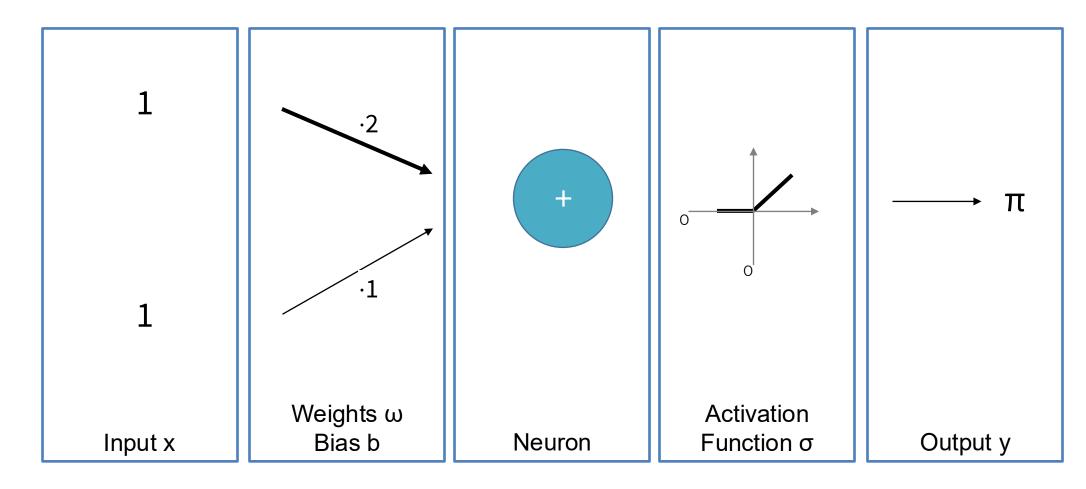


Different Combinations In Neural Networks



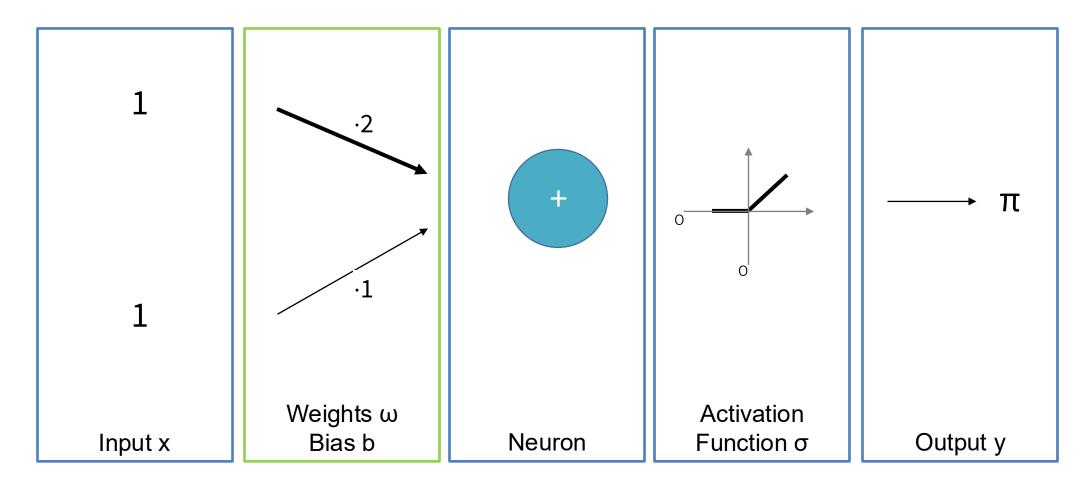
Neural network training

Learnable Parameters



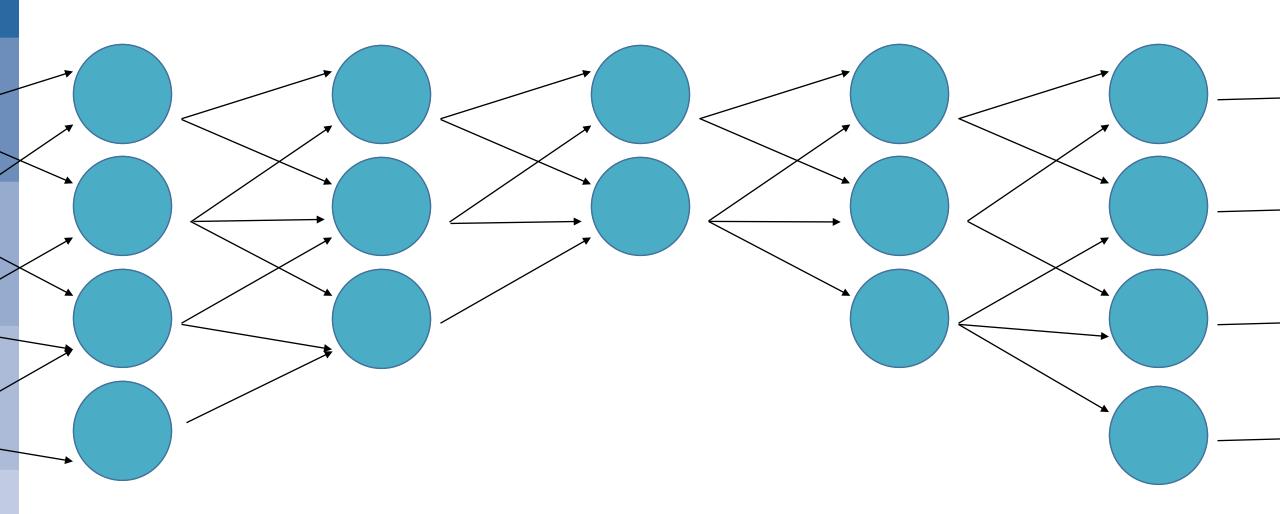
$$y = \sigma (\omega \cdot x + b)$$

Learnable Parameters



$$y = \sigma \left(\mathbf{W} \cdot x + \mathbf{B} \right)$$

Forward Pass In Neural Networks



Backward Pass with Numerical Optimization

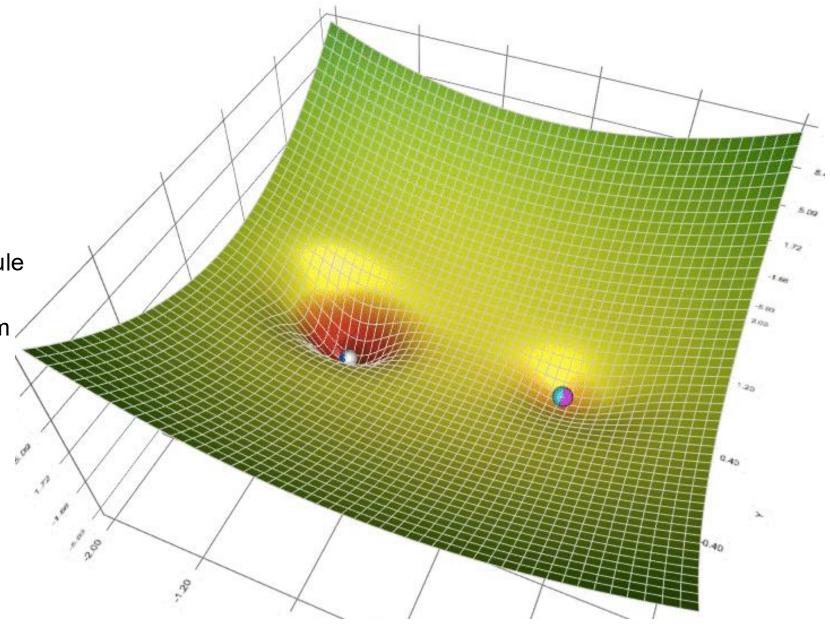
Calculate Error

Stochastic Gradient Descent

Go towards minimum

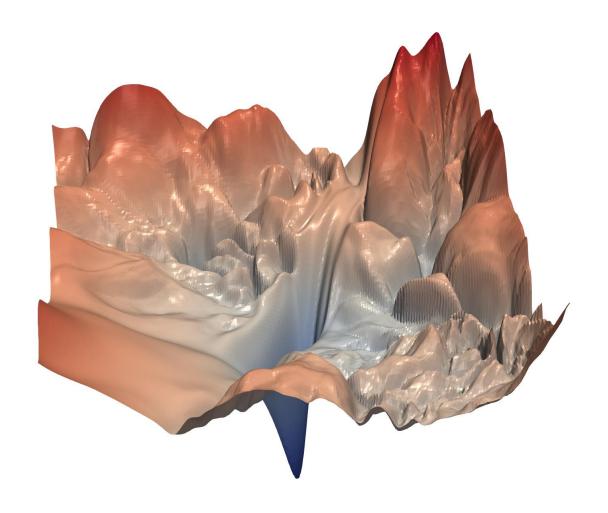
· Correct network with chain rule

Hopefully the global minimum



Realistic choices during training

- Loss surface usually highly irregular
- Different architectures choices change surface
- Take small steps toward minimum
- Use averaging and momentum
 - Adam optimiser
- Regularisation for better optimum



Regularisation

Neural networks are extremely powerful function approximators.

- o They can learn not just patterns (but also *noise*) if left unchecked.
- This happens when the network fits training data too perfectly, losing the ability to generalize to unseen data.

Regularisation

Neural networks are extremely powerful function approximators.

- o They can learn not just patterns (but also *noise*) if left unchecked.
- This happens when the network fits training data too perfectly, losing the ability to generalize to unseen data.

Regularisation

Neural networks are extremely powerful function approximators.

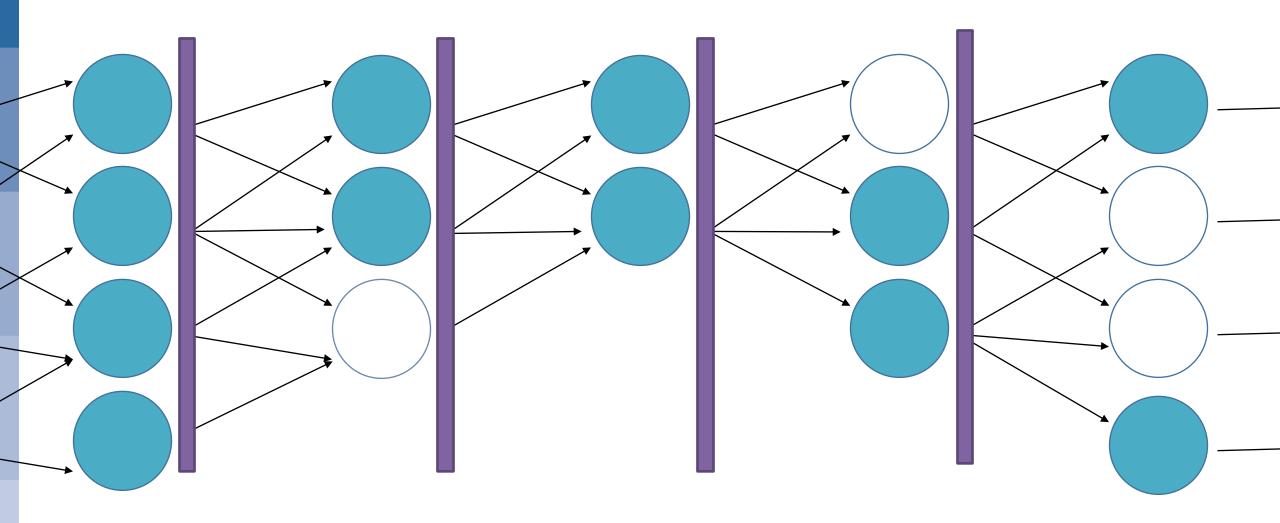
- o They can learn not just patterns (but also *noise*) if left unchecked.
- This happens when the network fits training data too perfectly, losing the ability to generalize to unseen data.

Overfitting !!!

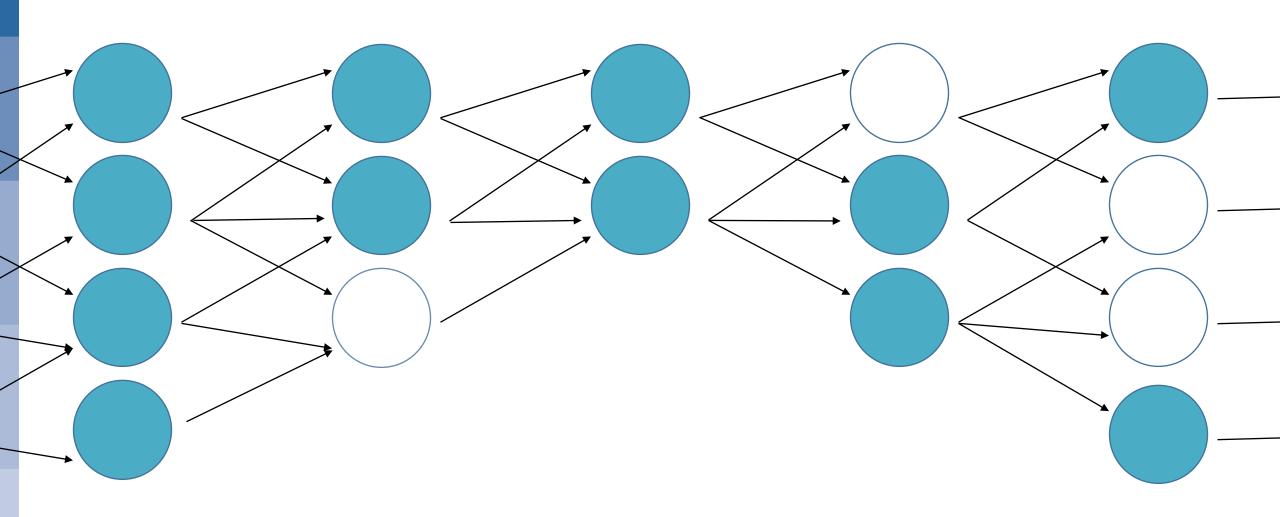
Regularization methods add constraints or penalties that discourage overfitting.

They guide the model to learn simpler, smoother, or more robust representations.

Standardisation using BatchNormalisation



Regularisation using Dropout



Neuron switched off

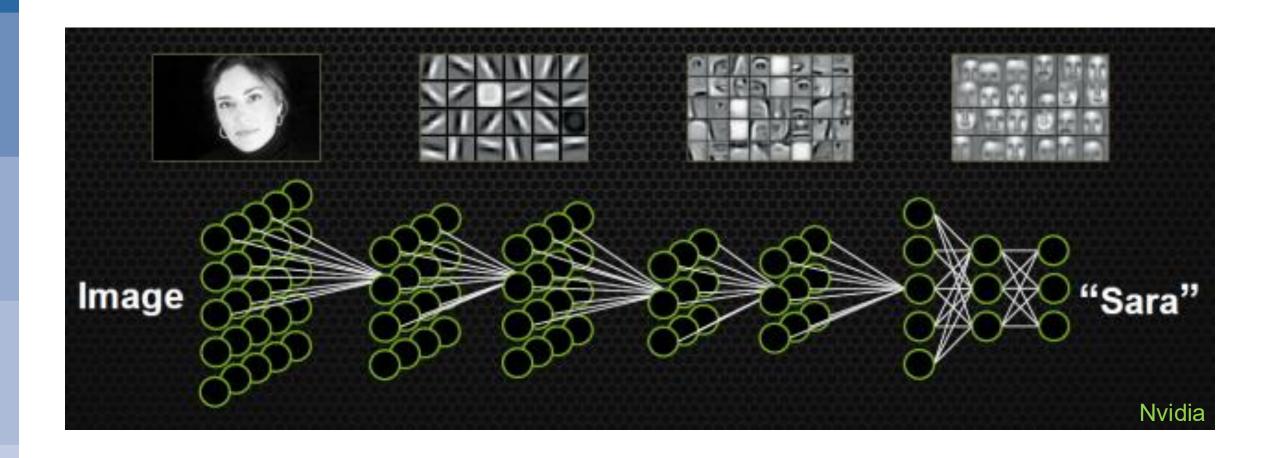
Other

- Adapting the loss function
 - L1 regularization --> It keeps weights sparse
 - L2 regularization --> It makes weights smaller
- Training strategy
 - Early stopping
 - Data augmentation
 - Noise injection

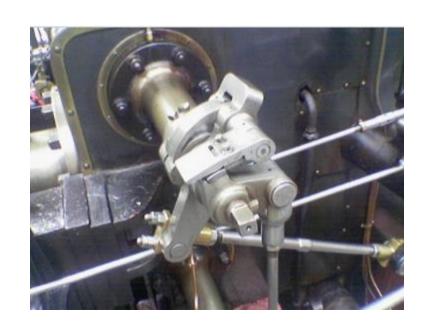
Working with Spatial Data

Tuesday 12:00

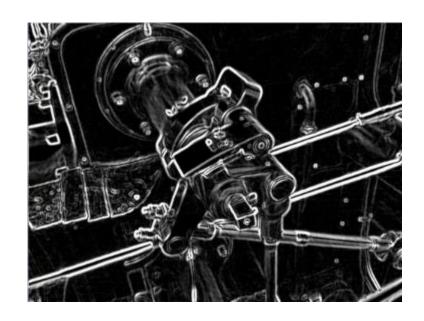
Networks on Images



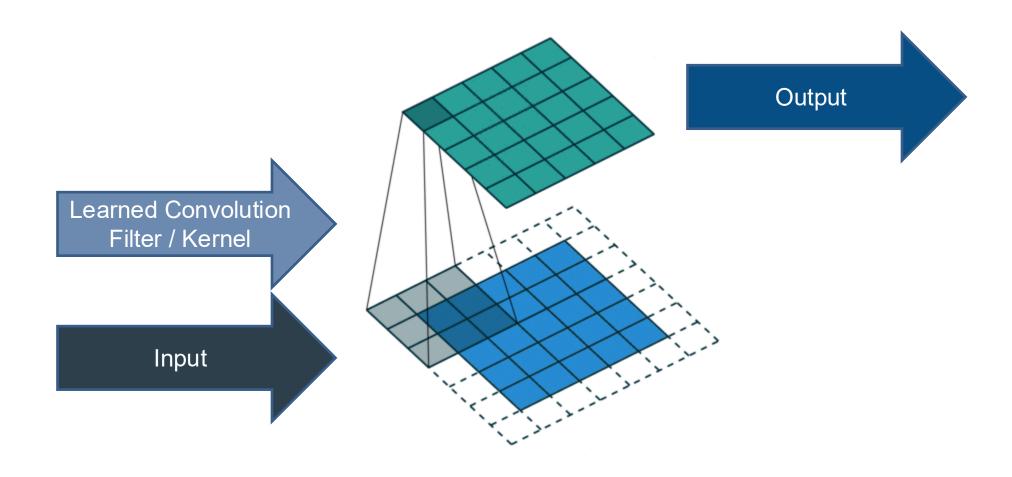
Sobel operator



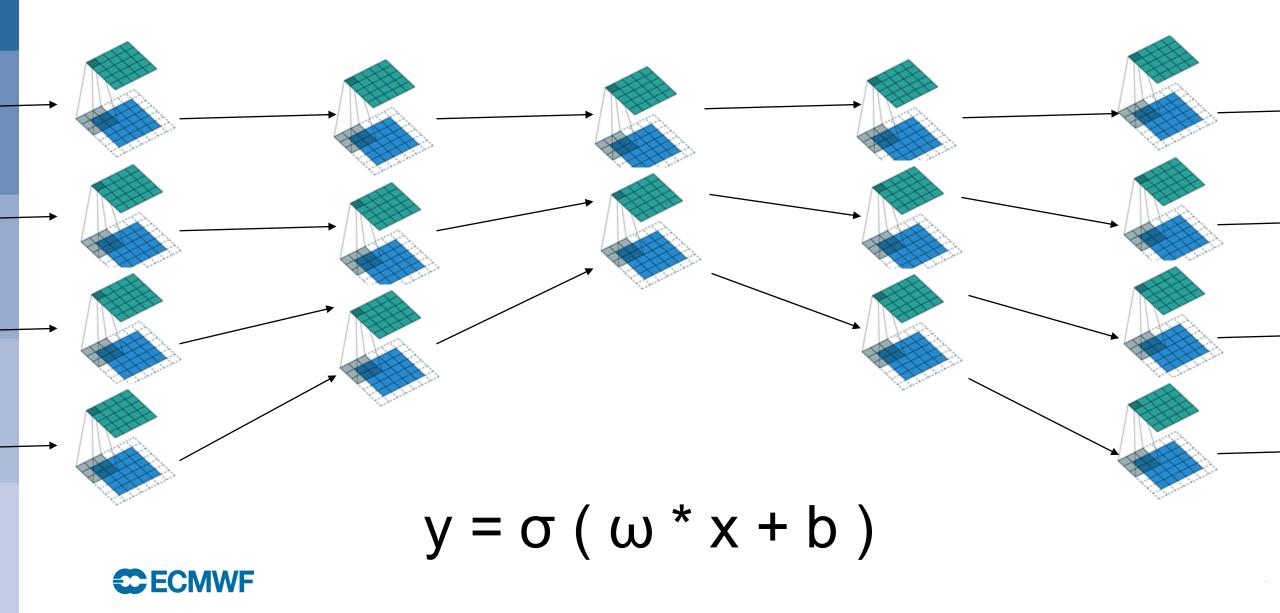
$$egin{aligned} \mathbf{G}_x &= egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \ \mathbf{G}_y &= egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix} * \mathbf{A} \end{aligned}$$



2D Convolutions



Convolutional Neural Networks – Overly Simplified

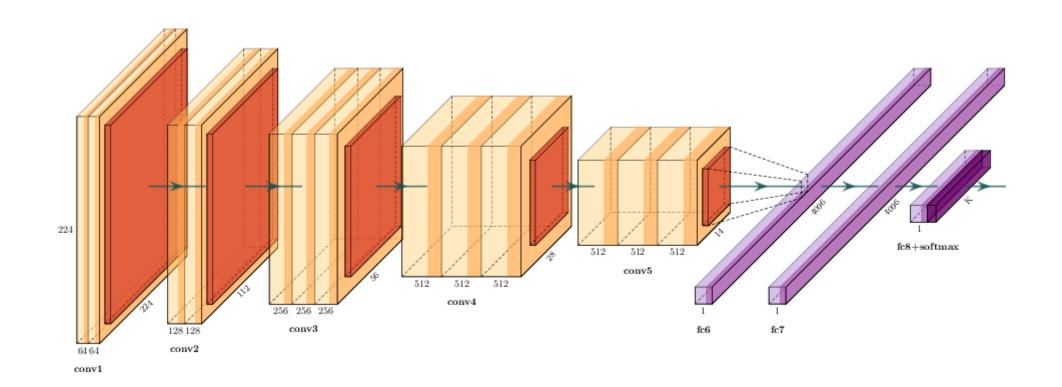


Convolutional Neural Networks

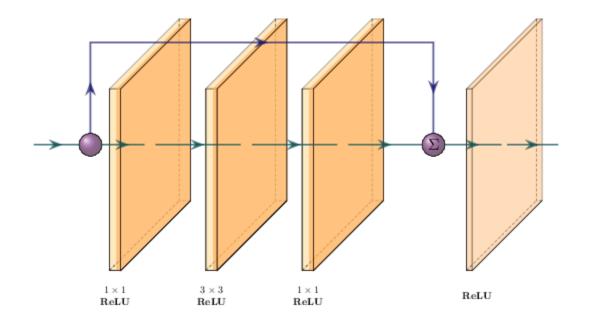
- Works with Locally Connected Data, e.g.
 - Photos
 - Satellite data
 - Weather fields
- Convolutional filters are learnt from data
- Compression changes focus of different layers
- Convolutions share weights and reduce computation

Combining Concepts into Architectures

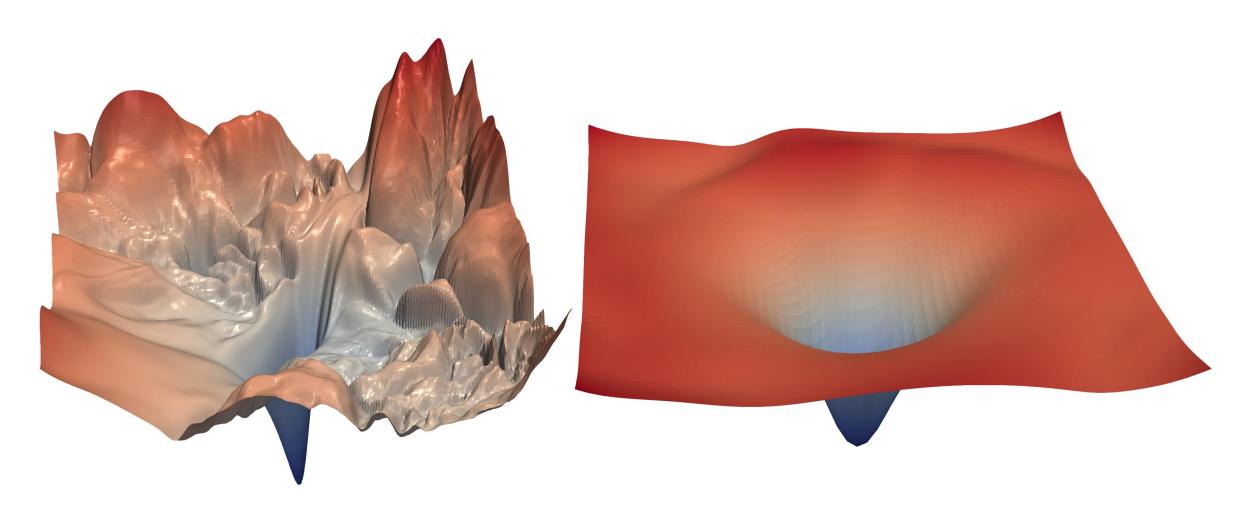
CNN + Dense: Classification Architecture (VGGNet-16)



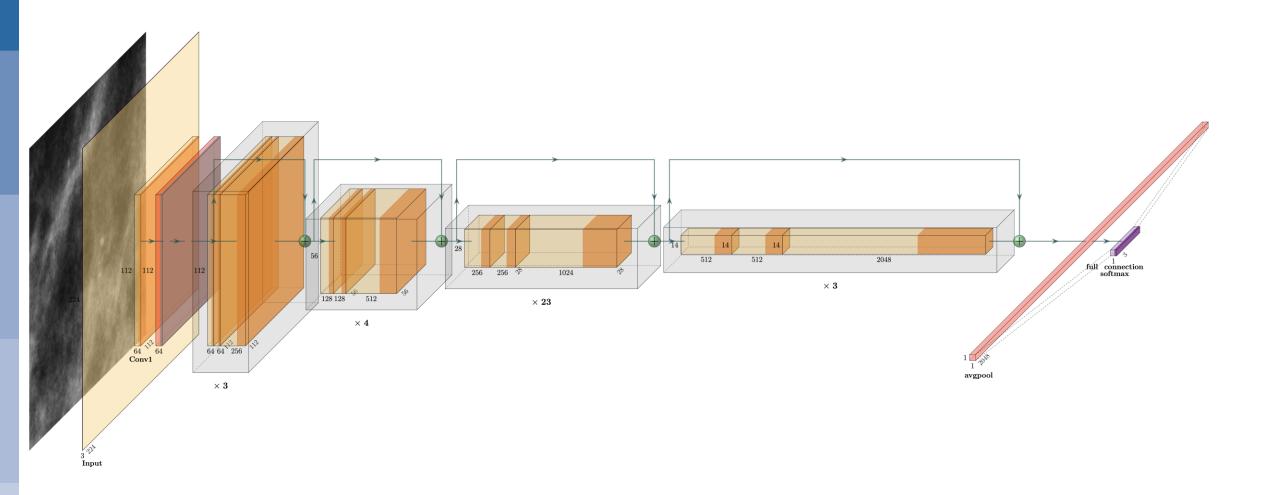
ResNet Blocks: Utilizing Shortcuts



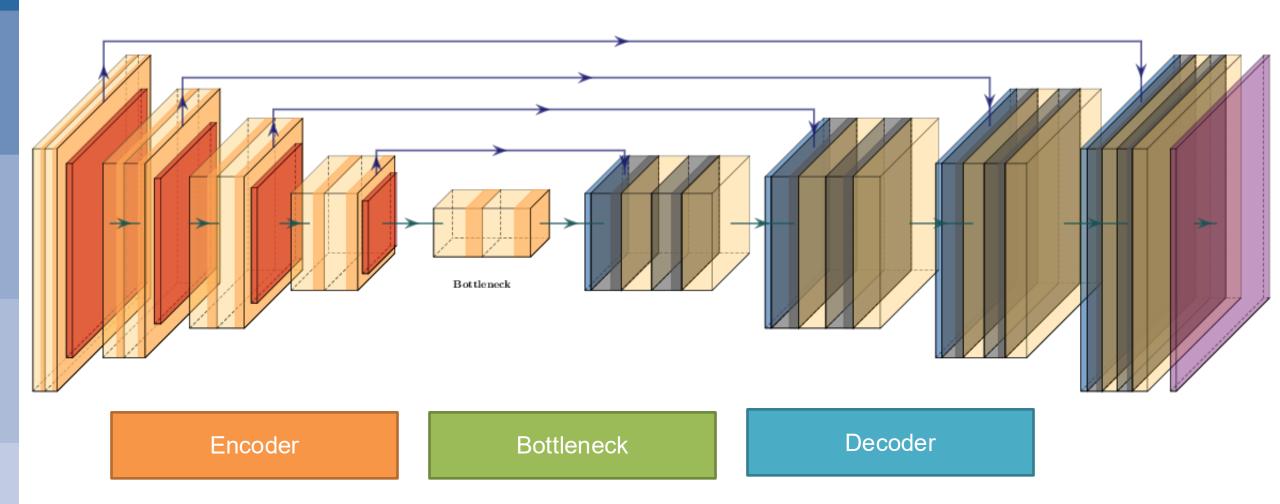
Why we use Residual Connections



Going deep: ResNet-101

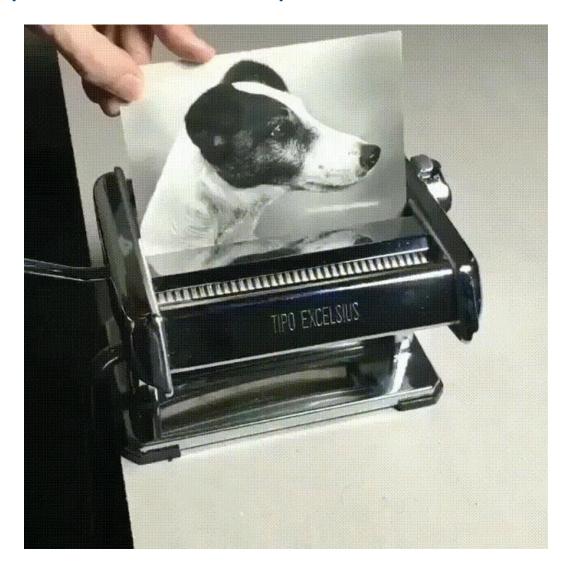


Unet: Utilizing Compression for Encoding / Decoding



64

Why we use Compression / Latent Spaces

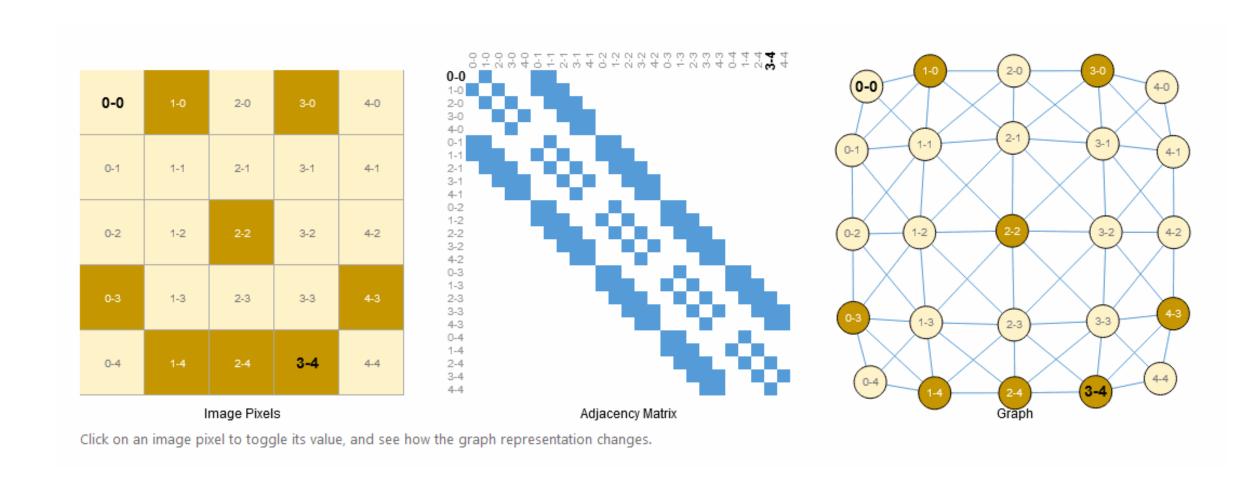


"Compression forces understanding."

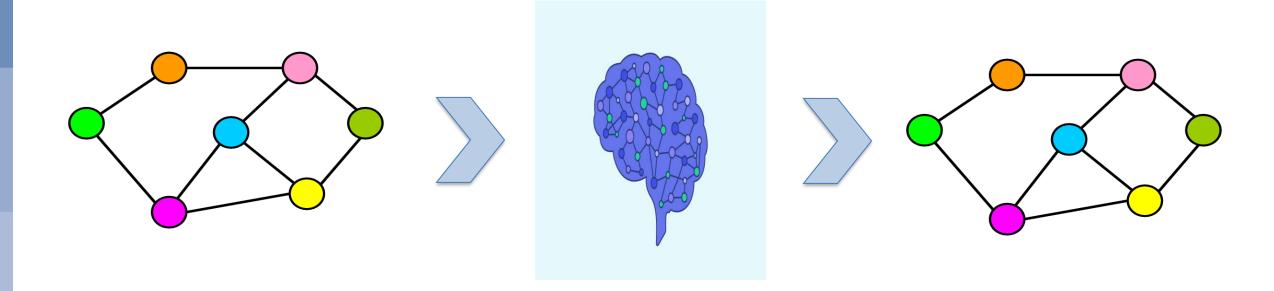
Graph Neural Networks

Wednesday 12:00

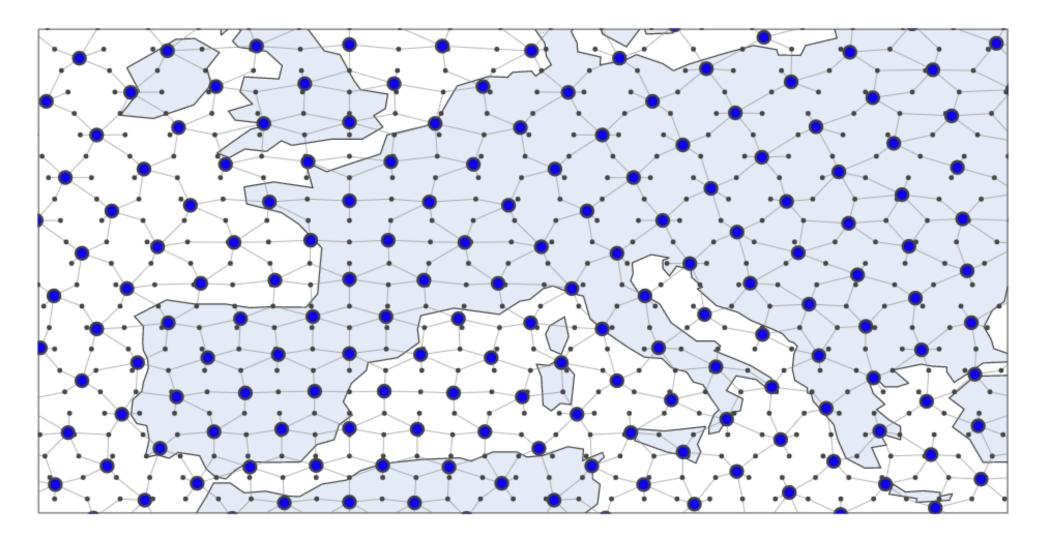
Defining Operations on Graphs



Graph Neural Networks



Defining Operations on Graphs: Convolutions



Defining Operations on Graphs: Transformers

AIFS

Conclusion

What We Learned

- Neural Network Training
- Network Types
 - Dense Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Transformers
 - Graph Neural Networks
- Example Architectures
- Compression
- Shortcuts / Residual Connections

Questions

