Convolutional Neural Networks

Training course: Machine learning for weather prediction

Vera Gahlen

ECMWF

vera.gahlen@ecmwf.int

Outline

- Motivation for convolutions
- What is a convolution?
- Convolution's arithmetic
- Building a Convolutional Neural Network
- Connecting image structure and CNN architecture
- Popular CNN-based architectures ResNets, U-nets

Motivation for convolutions

Why not use an MLP?

• Expressiveness?

MLPs are universal approximators — special architectures aren't needed to represent good solutions.

Compute?

- Well-designed architectures encode inductive biases that constrain the hypothesis space, enabling similar performance with less data and less computation.
- Historically, before CNNs, training large networks for vision tasks was infeasible more compute alone wasn't enough.

Optimization!

- Architectures shape the loss landscape, making good solutions discoverable by gradient descent.
- Modern DL relies more on architectures than on optimizers to make training feasible.

Generalization

Constraining the hypothesis space also helps prevent overfitting.

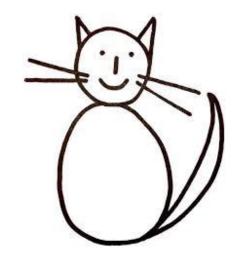
>> Architectures don't just tell us what can be represented — they determine what can be found.

What structure do images have?



MNIST Dataset of handwritten digits

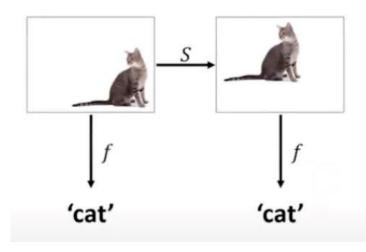
- Spatial locality
 To make sense of a pixel, we need (only!) the surrounding pixels
- Compositional structure
 Simple features (edges) combine into complex ones (textures, shapes)



What structure do images have?

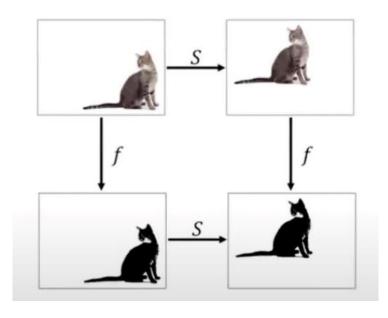
Translation Invariance

Invariance



Translation Equivariance

Equivariance



05 Imperial's Deep learning course: Equivariance and Invariance
Bernhard Kainz
https://www.youtube.com/watch?v=a4Quhf9NhMY

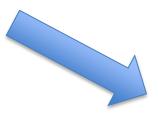
Motivation for convolutions

What structure do images have?

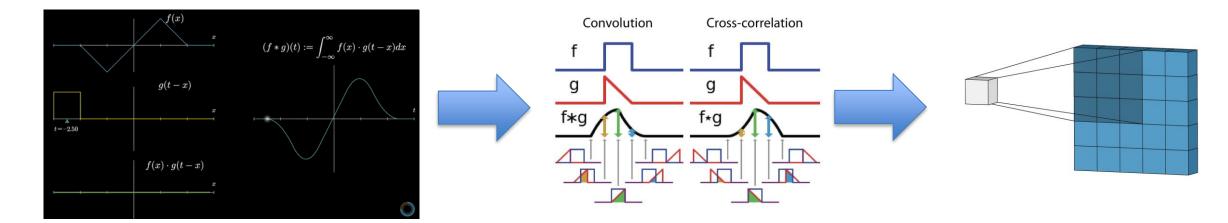
- •Locality Neighboring pixels tend to form meaningful local structures (edges, corners, textures)
- •Compositional structure Simple features combine into complex ones
- •Translation equivariance Shifting the input shifts the output the same way

We want the model to perform **localized**, **translation-equivariant** aggregation/extraction of visual information

The architecture needs to suit the problem

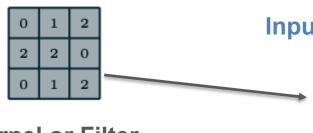


Sliding filters
apply the same local
pattern extraction
everywhere in the image



But what is a convolution? 3Blue1Brown

Intuitively Understanding Convolutions for Deep Learning Towards Data Science



Input Feature map

Output Activation Map

Kernel or Filter

3	3	2	1	0	
0	0	1	3	1	
3	1	2	N	3	
2	0	0	2	2	
2	0	0	0	1	

12	12	17
10	17	19
9	9	14

0	1	2
2	2	0
0	1	2

$$= 0 * 3 + 1 * 3 + 2 * 2$$

$$+ 2 * 0 + 2 * 0 + 0 * 1$$

$$+ 0 * 3 + 1 * 1 + 2 * 2$$

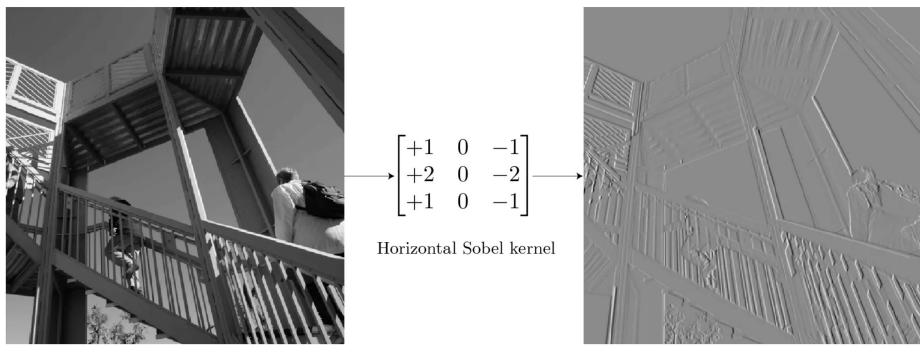
$$= 12$$

3	3	2	1	0
0	0	1	3	1
30	1,	22	2	3
22	02	00	2	2
20	0,	02	0	1

A guide to convolution arithmetic for deep Learning Dumoulin V., Visin. F, 2018, arXiv:1603.07285

Convolve a filter with the image = spatially sliding it over the image and computing the dot product

Automatic Feature Extraction



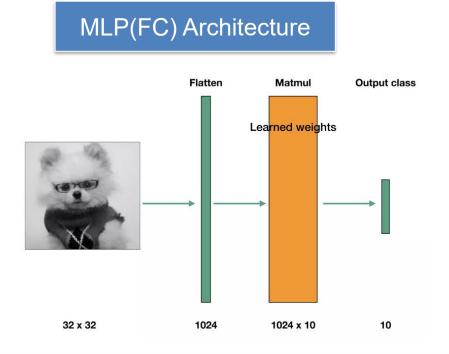
Applying a vertical edge detector kernel

https://setosa.io/ev/image-kernels/

The kernel/filter is the **trainable** part of the convolutional layer

11

Convolution versus MLP

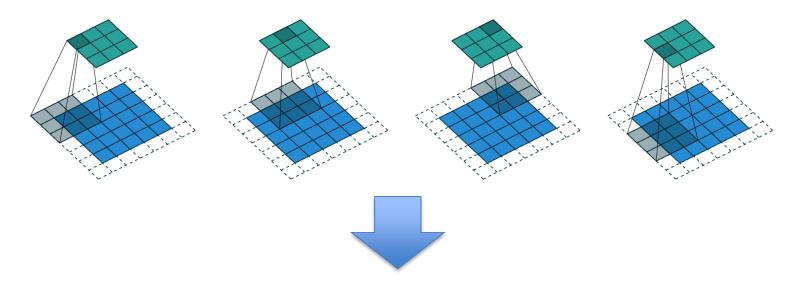


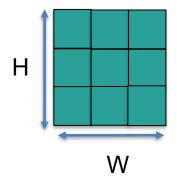
CNN Architecture Flatten Dot product Output Output **Activation** Map 5 x 5 patch **Weight Matrix** 32 x 32 25 x 1 28x28x1

• Inefficient weight use – no "weight sharing" Lecture 2A: Convolutional Neural Networks (Full Stack Deep FC do not provide translation invariance nor equivariance

Learning - Spring 2021)

Poor scaling with image size

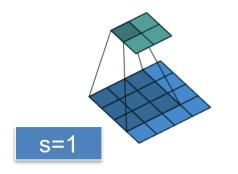


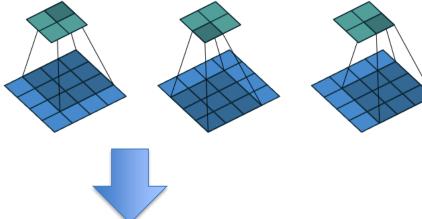


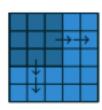
The shape of the output feature map (W,H) is defined based on:

- Shape of the input feature map (W,H)
- The Kernel size (w,h)
- The stride (s)
- The padding (p)

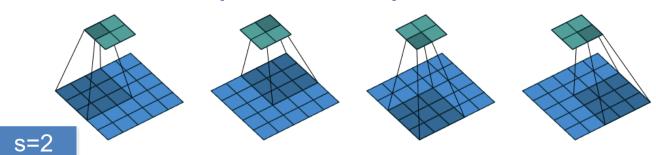
Stride



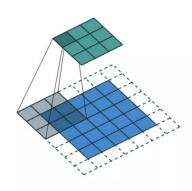




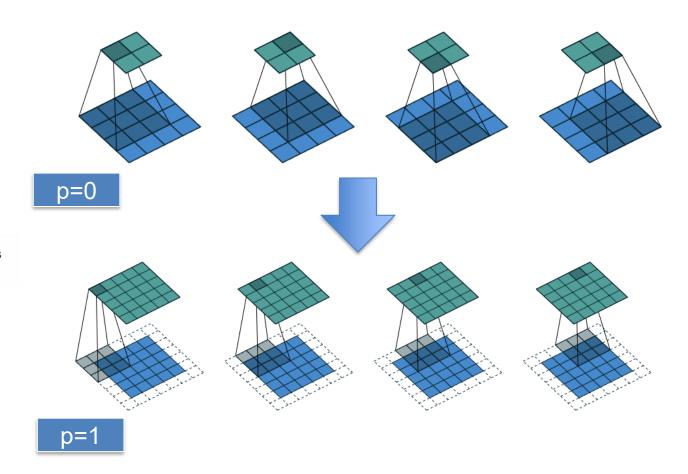
 Convolutions can subsample the image by jumping across some locations — this is called 'stride'



Padding



- Padding solves the problem of filters running out of image
- Done by adding extra rows/cols to the input (usually set to 0)



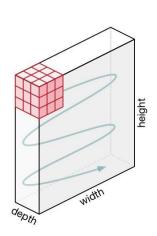
- ullet Input: (N,C_{in},H_{in},W_{in}) or (C_{in},H_{in},W_{in})
- ullet Output: $(N, C_{out}, H_{out}, W_{out})$ or $(C_{out}, H_{out}, W_{out})$, where

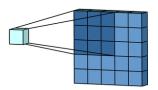
$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

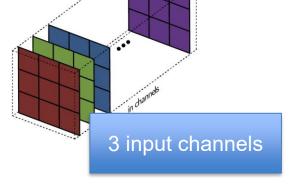
$$W_{out} = \left\lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
ight
floor$$

- The same convolution can be applied to images of different sizes
- Stride, padding, and kernel_size determine how height and width change in one layer
- Numbers of in_channels and out_channels determine how many kernels/filters the layer has

RGB Image







1 filter with 3 kernels

Can't forget the bias term!

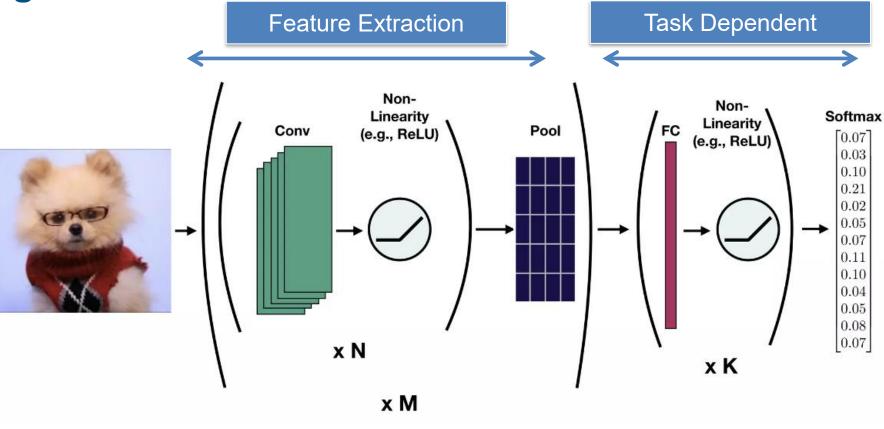
Multiple filters in one layer >> the same number of output channels (~ different views of the image)

Intuitively Understanding Convolutions for Deep Learning Towards Data Science

1 output channel

Building a Convolutional Neural Network (CNN)

Building a CNN



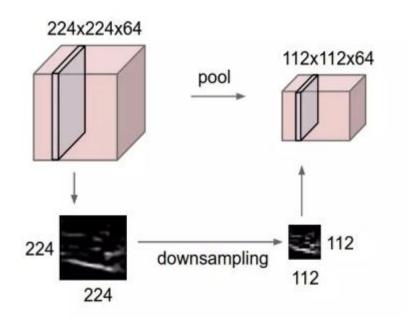
Lecture 2A: Convolutional Neural Networks (Full Stack Deep Learning - Spring 2021)

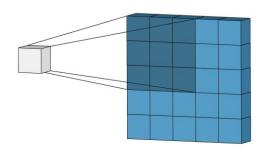
Feature Extraction Blocks:

- Convolutional layers extract local features
- Pooling layers aggregate the extracted local features

Building a CNN

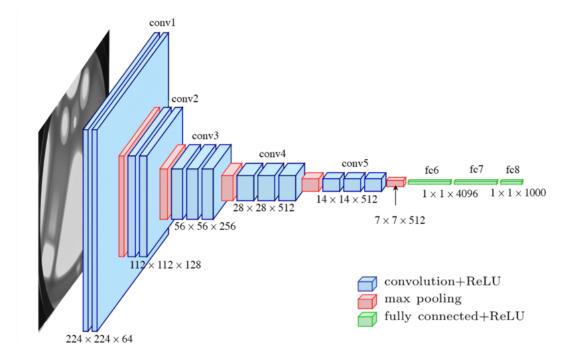
Pooling





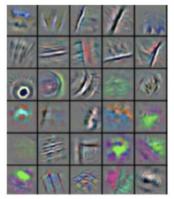
- Idea: downsample output activation maps from convolutional layers
- Similar to convolutional layer: Sliding window
- Instead of the dot product with the kernel, apply an aggregation function (e.g. max, avg)
- Reduces (H,W) by using bigger strides
- Preserves the number of channels

Building a CNN



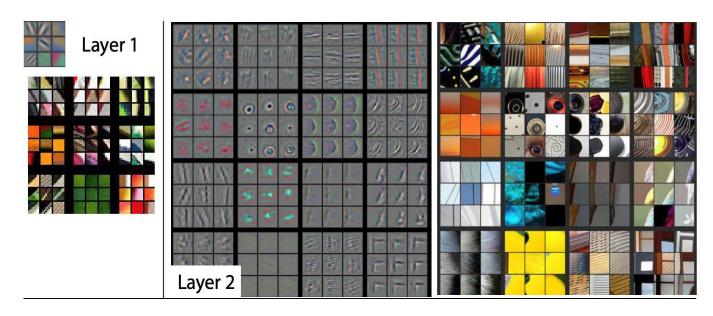
low-level features

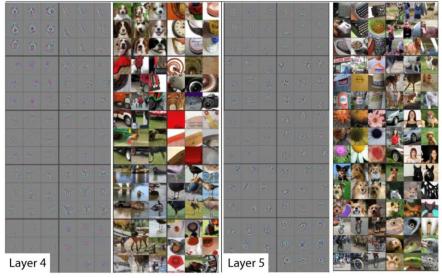
mid-level features



high-level features

Hierarchical Feature Learning

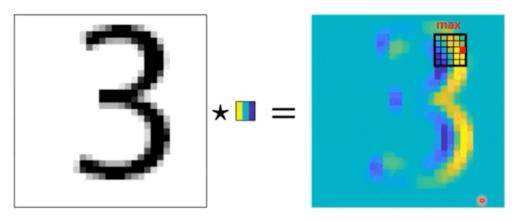




Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3

Translation Invariance

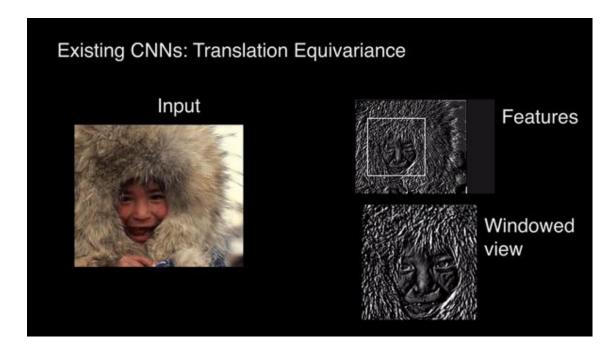
Approximate invariance in CNNs with pooling



Output of convolutional layer+max pooling (~shift invariant)

05 Imperial's Deep learning course: Equivariance and Invariance
Bernhard Kainz
https://www.youtube.com/watch?v=a4Quhf9NhMY

Translation Equivariance



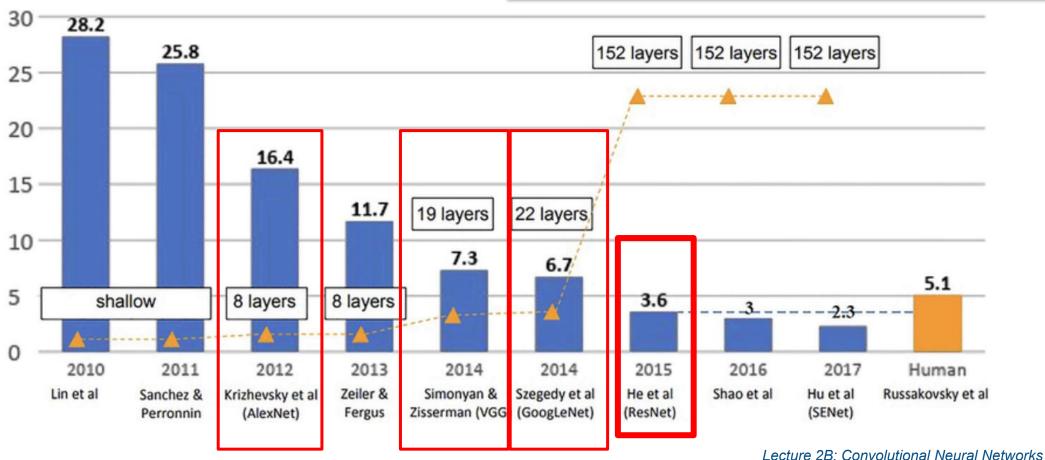
https://www.youtube.com/watchv=a4Quhf9NhMY&t=944s

Image property	Architectural reflection	Emergent result
Locality	Sparse local connections with shared filters	Early layers detect local features (edges, textures)
Translation equivariance	Sliding windows (convolution, pooling)	Feature maps shift with input
Compositional structure	Layered composition	Hierarchical representations (simple → complex)

Popular Convolutional Neural Network Architectures

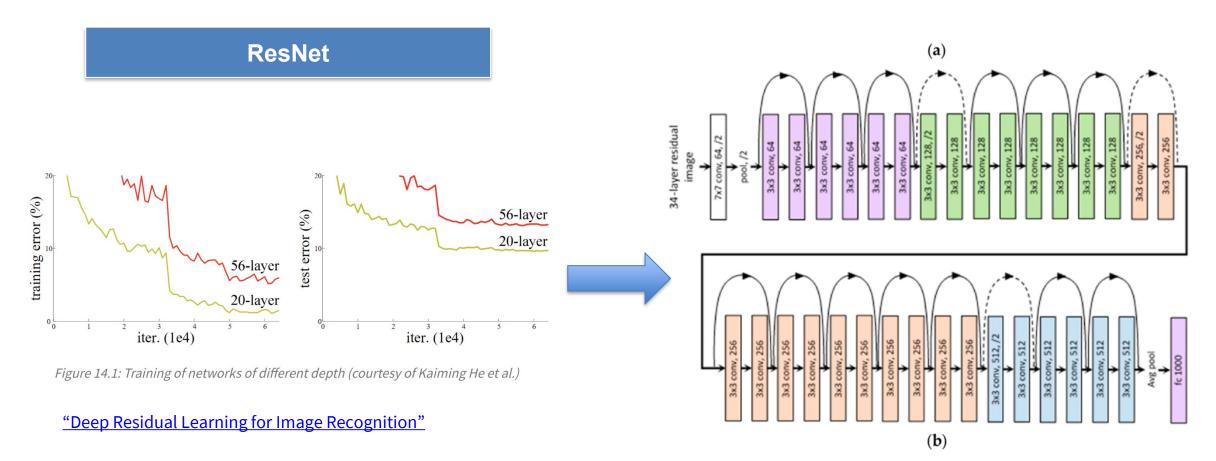
Popular CNN-based architectures

ImageNet Large Scale Visual Recognition Challenge



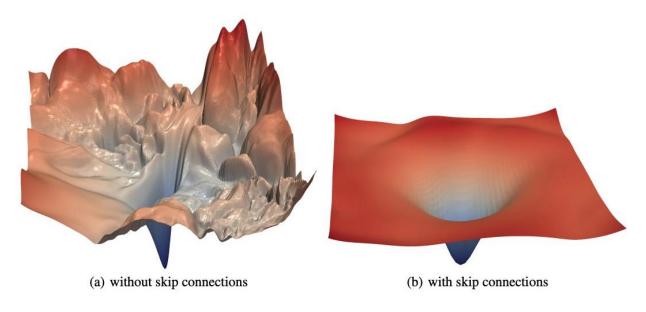
Lecture 2B: Convolutional Neural Network (Full Stack Deep Learning - Spring 2021)

Popular CNN-based architectures - ResNets



ResNet-34 Layered architecture

Popular CNN-based architectures

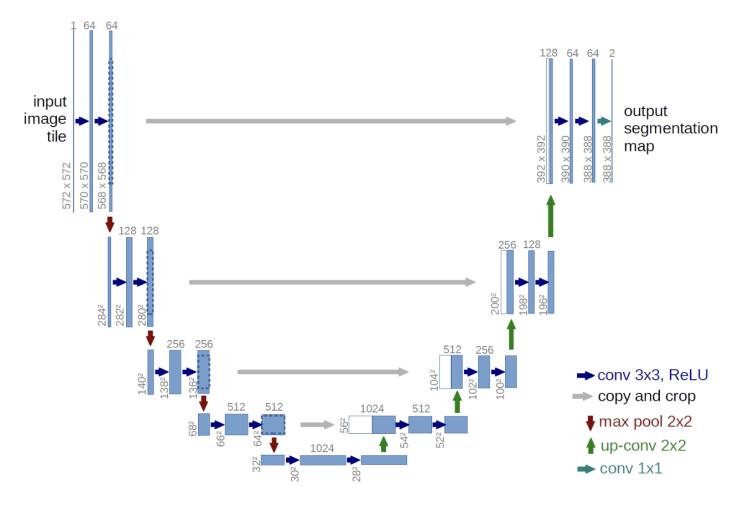


The loss surfaces of ResNet-56 with and without skip connections

Using skip connections helps smooth the loss function, which makes training easier as it avoids falling into a very sharp area.

Visualizing the Loss Landscape of Neural Nets https://arxiv.org/abs/1712.09913

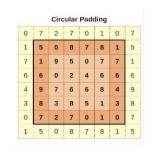
Popular CNN-based architectures – U-Nets

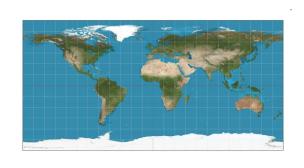


U-Net: Convolutional Networks for Biomedical Image Segmentation arxiv.org/abs/1505.04597

Popular CNN-based architectures

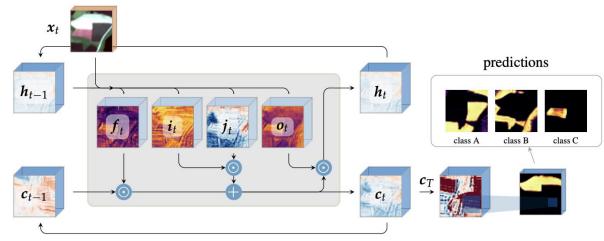
Periodic Convolutions





https://github.com/pangeo-data/WeatherBench/blob/master/src/train nn.py#L102

Spatio-Temporal Data - ConvLSTMS



Convolutional LSTMs for Cloud-Robust Segmentation of Remote Sensing Imagery

Marc Rußwurm

References

- Deep Learning book CNNs https://www.deeplearningbook.org/contents/convnets.html
- Understanding Deep Learning CNN chapter https://udlbook.github.io/udlbook/
- CNN feature visualization https://distill.pub/2017/feature-visualization/
- CNN feature visualization https://arxiv.org/pdf/1311.2901.pdf
- Intuitively Understanding Convolutions for Deep Learning
- A guide to convolution arithmetic for deep Learning Dumoulin V., Visin. F, 2018, arXiv:1603.07285
- Lecture 2A and Lecture 2B Convolutional Neural Networks (Full Stack Deep Learning Spring 2021)
- Invariance and equivariance https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf
- Imperial's Deep learning course: Equivariance and Invariance, Bernhard Kainz

