

CAPC-AC, Outil Régional d'Analyse de Vulnérabilité et d'Adaption au **Changement Climatique pour une Prise de** Décision Eclairée.

Octobre, 16 2025

Douala,

The Climate Application and Prediction Centre for Central Africa (CAPC-AC)

The CAPC – A Technical and Scientific Advisory Institution for Climate-Informed Policy Decisions for Sustainable Development in Central Africa: An Integrated Instrument of the ECCAS Environmental Diplomacy.

CAPC-AC: Institutions spécialisée de la CEEAC

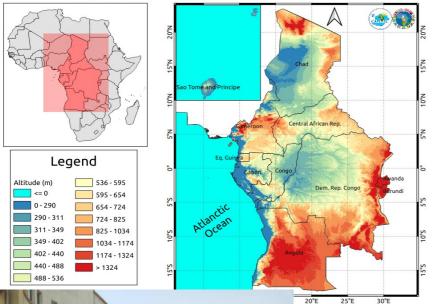
Guided by the vision of shared prosperity and resilience, the Conference of Heads of State and Government of ECCAS aspires to make

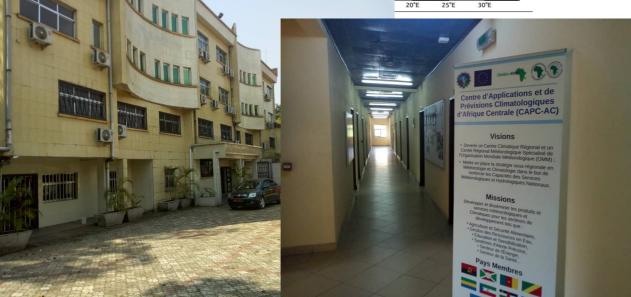
Central Africa the most climate-resilient region on the continent, capable of turning

climate challenges into opportunities for sustainable development.

- The Conference of Heads of State and Government (CHSG) of ECCAS is determined to safeguard the vital maritime interests of ECCAS Member States and the Gulf of Guinea.
- The CHSG aims to significantly improve the health and well-being of the populations of ECCAS Member States and neighboring regions.
- The CHSG is committed to accelerating the structural transformation of the natural resource-based economy to foster inclusive and sustainable growth.
- The CHSG of ECCAS is committed to making Integrated Water Resources Management, together with a coherent regional policy on environment and natural resources, a cornerstone of sustainable development and resilience in Central Africa.

Mandate: To support the implementation of Community Sectoral Policies and Strategies aimed at fostering the integration and sustainable development of Central Africa.




The ECCAS Climate Application and Prediction Centre (CAPC-AC)

Topographic Map over Central Africal

- Created: 2015
- Location: Douala, Cameroon
- Member States: Angola, Burundi, Cameroon, Central African Republic, Republic of Congo, Democratic Republic of the Congo, Gabon, Equatorial Guinea, Rwanda, São Tomé and Príncipe, Chad

Mandate:

To support the implementation of Community Sectoral Policies and Strategies aimed at promoting regional integration and sustainable development in Central Africa.

• Missions:

Strengthening the capacities of the National Meteorological and Hydrological Services (NMHSs) of the region, all of which are Members of the World Meteorological Organization (WMO).

Vision:

To become a WMO Regional Climate Centre (RCC) and a Specialized Centre for High-Resolution Regional Numerical Modelling, serving as a hub for climate services, forecasting, and anticipatory action in Central Africa.

CAPC-CREWS 4/28

The ECCAS Climate Application and Prediction Centre (CAPC-AC)

- Created: 2015
- Location: Douala, Cameroon
- Member States: Angola, Burundi, Cameroon, Central African Republic, Republic of Congo, Democratic Republic of the Congo, Gabon, Equatorial Guinea, Rwanda, São Tomé and Príncipe, Chad
- Mandate:
- To support the implementation of Community Sectoral Policies and Strategies aimed at promoting regional integration and sustainable development in Central Africa.
- Missions:
- The CAPC-AC is an intergovernmental cooperation body of the ECCAS Commission, entrusted with the execution of a public service mandate.
- In this capacity, it contributes to strengthening the capacities of the National Meteorological and Hydrological Services (NMHSs) of the region, all of which are Members of the World Meteorological Organization (WMO).
- Vision:
- To become a WMO Regional Climate Centre (RCC) and a Specialized Centre for High-Resolution Regional Numerical Modelling, serving as a hub for climate services, forecasting, and anticipatory action in Central Africa.

The ECCAS Climate Application and Prediction Centre (CAPC-AC) $\{$

Core Function	Description
Data Collection and Processing	Acquisition of climate and environmental data (satellite, in situ, and numerical models such as WRF, GFS, CMIP6).
Forecasting and Modelling	Production of meteorological and climate forecasts (seasonal, real-time, nowcasting) and risk modelling (floods, droughts, heatwaves).
Climate Services Production	Development of Advosiries bulletins, agrometeorological products, risk indices, dynamic mapping, and interactive platforms.
Information Dissemination	Multichannel communication (web portal, email, WhatsApp, SMS, TV/radio) to end users, governments, NGOs, and humanitarian agencies.
Training and Capacity Building	Technical sessions for forecasters, national focal points, regional institutions, and projects (anticipatory action, community early warning systems, use of NetCDF data, etc.).
Technical Assistance and Regional Coordination	Support to Member States and coordination with ECCAS, CICOS, CBLT, ALG, and UNDRR for integrated early warning systems.

CAPC-CREWS 6 / 28

The ECCAS Climate Application and Prediction Centre (CAPC-AC) $\{$

Supportin Functions and Activities	Description				
Infrastructure & Information Systems	HPC system, station networks, servers, web platform, Python applications, and GIS tools.				
Partnership Development	Cooperation with WMO, UNDRR, ACMAD, AfDB, NOAA, and projects under GCF/GEF/CREWS, among others.				
Strategic Management	Itegrated regional vision aligned with Agenda 2063, the Sustainable Development Goals (SDGs), the National daptation Plans (NAPs) of Member States, and international frameworks including the Paris Agreement, Sendai ramework for Disaster Risk Reduction, and the Early Warning for All (EW4ALL) initiative.				
Innovation & R&D	Co-production of innovative services (impact-based alerts, AI, IoT, integrated risk indices).				
Human Capital	Experts in climatology, hydrometeorology, GIS, ICT, disaster-risk management, and scientific communication.				

CAPC-CREWS 7 / 28

The ECCAS Climate Application and Prediction Centre (CAPC-AC) $\{$

Strategic resources	Key Resources
Human	CAPC Coordinator, Deputy Coordinator, M&E Expert, Climate Expert (LF), Early Warning/Impact Based Forecast Expert, Admin and Finance Assistant.
Technological	WRF/GEFS/CMIP6 models, HPC systems (not installed), NetCDF databases, visualization tools (Matplotlib, Cartopy), and GIS platforms (QGIS, ArcGIS).
Informational	Historical and real-time datasets, regional shapefiles, climate atlases, bulletins, and sectoral knowledge databases.
Institutional	Regional status recognized by ECCAS; in the process of WMO RCC designation; leadership role in climate early warning systems.
Partnerships	Strategic collaboration with WMO, UNDRR, ECCAS, WMO RCCs, regional agencies, and research institutes.

CAPC-CREWS 8 / 28

The ECCAS Climate Application and Prediction Centre (CAPC-AC)

Core Competencies

Domain	Competency
Regional Forecasting and Risk Analysis	Ability to produce, interpret, and translate meteorological and climate forecasts at multiple scales, and to derive risk indicators.
Early Warning Systems	Design and support of community-based early warning systems (EWS), development of impact-based tools, and interoperability with disaster management platforms.
Training and Capacity Transfer	Capability to train Member States, National Focal Points, and regional institutions on the operational use of climate data and tools.
Co-Production with Users	Participatory design of climate services in collaboration with key sectors (agriculture, health, civil protection, energy, etc.).
Regional Integration	Coordination and harmonization of alerts among Member States and basin organizations, ensuring clear regional mandates and coherence.

CAPC-CREWS 9 / 28

CAPC-AC SERVICE AREAS

METEOROLOGY

CLIMATE CHANGE

DISASTER RISK REDUCTION

AGRICULTURE AND FOOD SECURITY

WATER

ENERGY

HEALTH

TRAINING

SCIENCE-BASED

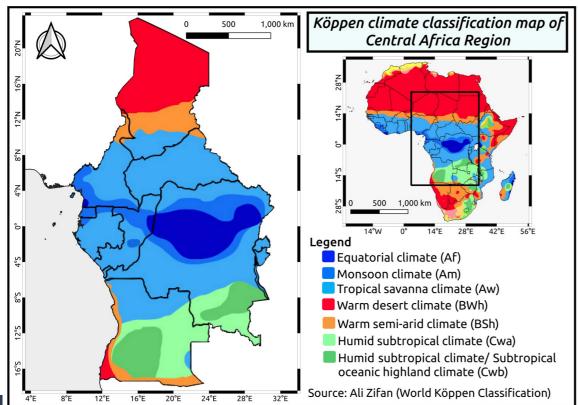
COMMUNICATION AND KNOWLEDGE **MANAGEMENT**

COLLABORATION

CAPACITY BUILDING

Tools, Data and Methodology

CAPC-AC/UNDP

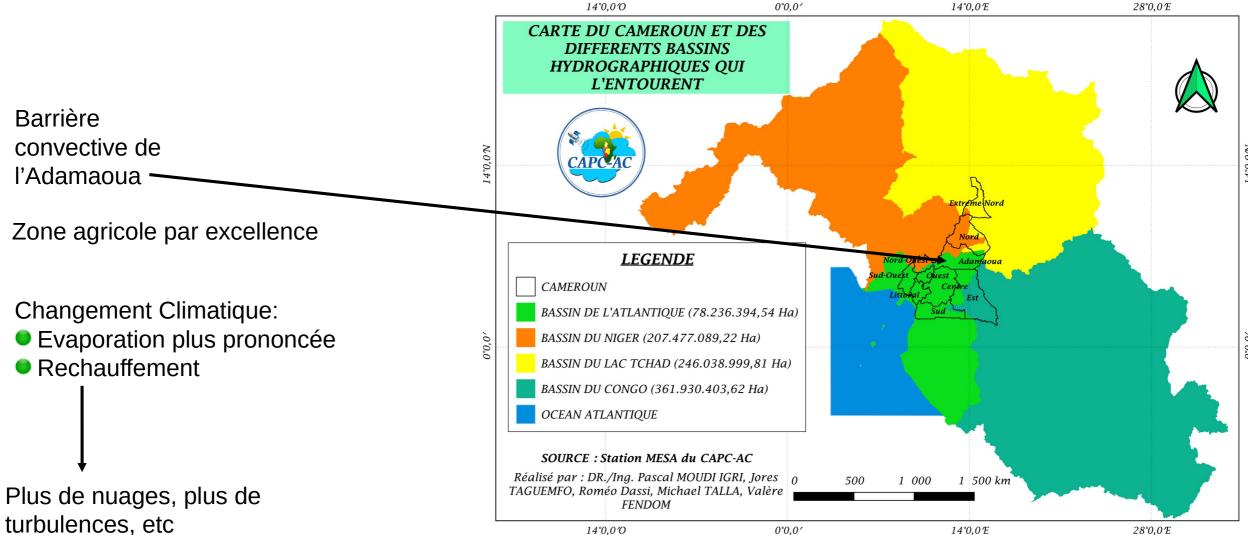


Compréhension du Climat et Modélisation

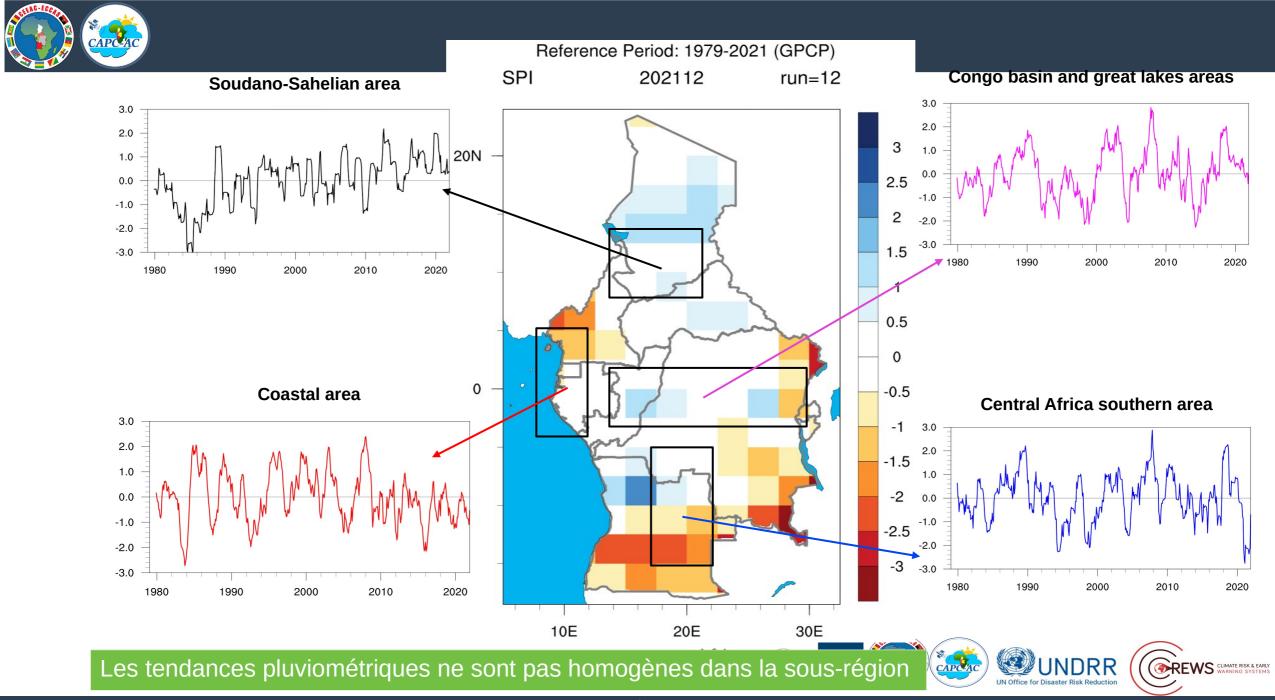
Communauté Economique des Etats de l'Afrique Centrale

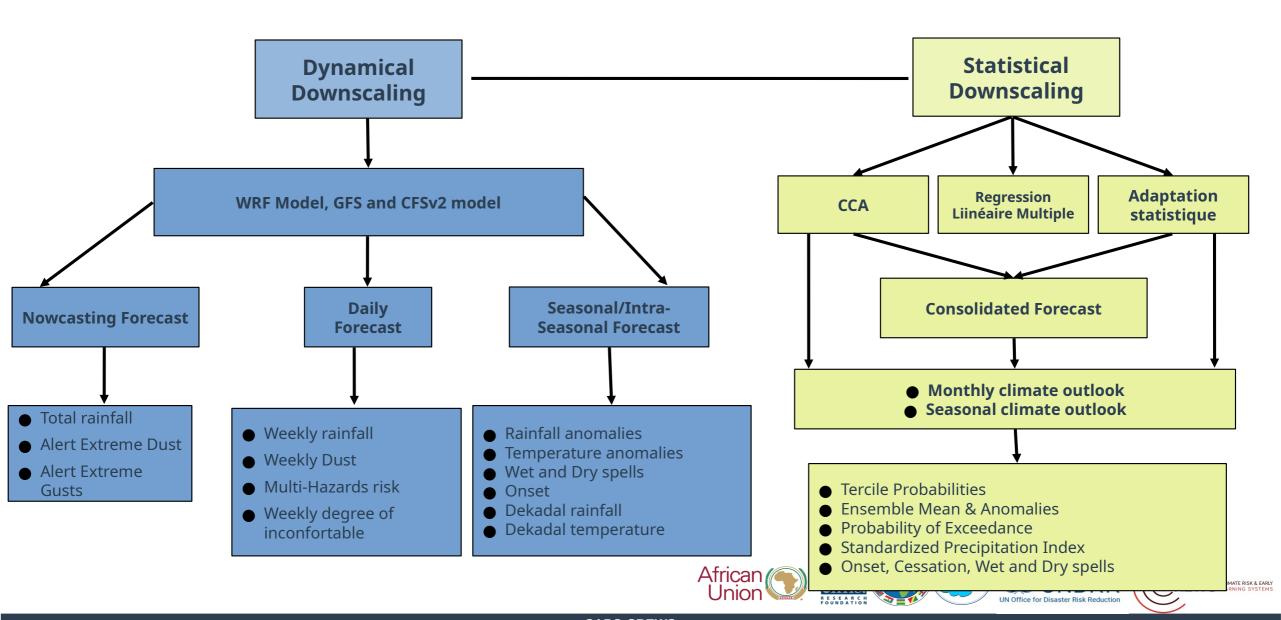
Superficie	6,6 millions de Km ²		
Population	181 millions d'habitants		
Nombre de Pays	Angola, Burundi, Cameroon, Central African Republic, Chad, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon, Rwanda, and Sao Tome and Principe		

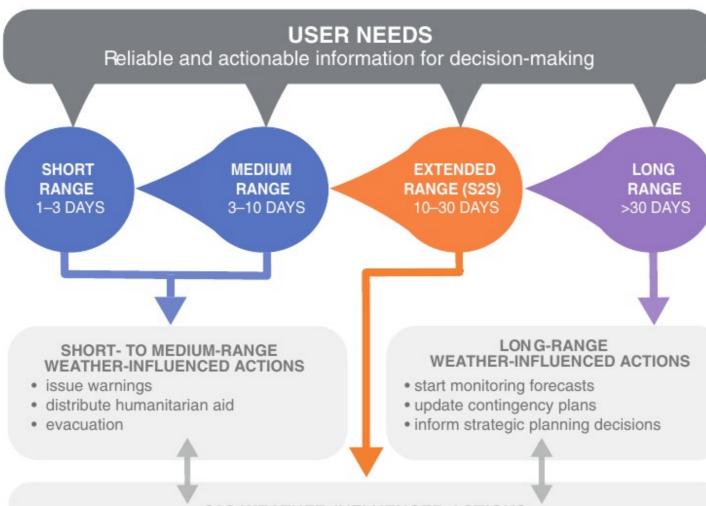
Presque tous les types de climats d'Afrique sont observés en Afrique Centrale



Veille Environnementale: Applications à l'Agriculture (SMHN)







CAPC-CREWS 16 / 28

(b)

S2S WEATHER-INFLUENCED ACTIONS

- · continue monitoring forecasts
- · update community warnings
- initiate preparedness activities
- · revise water allocations
- activate water conservation practices

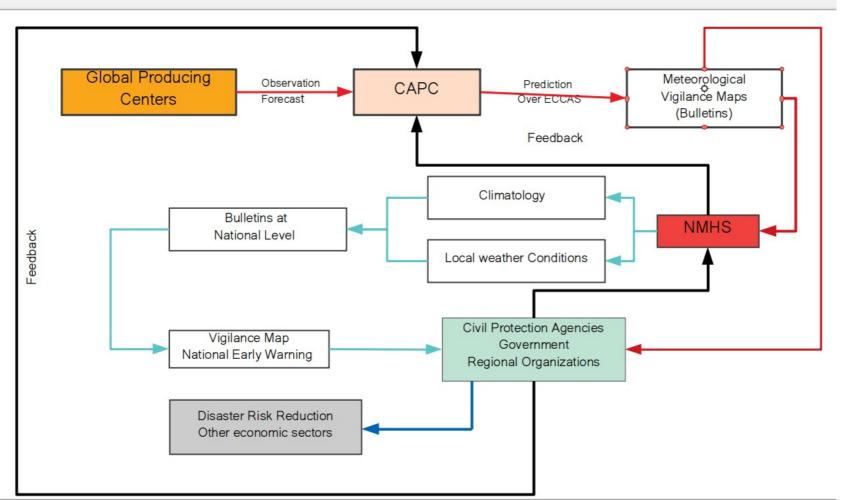
- supplement financial risk strategies
- · inform loss scenarios
- update peak energy demand scenarios
- pre-positioning of disaster response materials
- implement irrigation, pesticide or fertilizer schedules

Tableau de correspondance prévisions-bulletins météorologiques

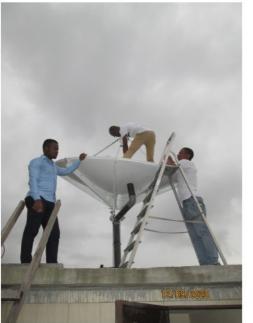
	Types de	Echéances	Echelles Dimensions		Dimensions Dhénomènes observ	Phénomènes observables	Type de bulletins Météorologiques	Produits	1
prévision		Echeances	Echenes	spatiales	temporelles	Phenomenes observables			
	Prévision Immédiate (Nowcasting)	00 à 02 h	-Micro échelle -Echelle aérologique	Du mètre à 10 km	Seconde, Minute, Heure	Tourbillon de poussière, torrnades, rafales de vent, orage, brouillard	Bulletins d'alerte, avertissement (Warning)	Imagerie satellitaire, Profil verical, Radiosondage, Humidité Relative, températures, pression atmosphérique, vents, OLR	
	Prévision à très courte échéance (Nowcasting)	02 h à 12 h	-Echelle aérologique -Méso échelle	10 -100 km	Quelques heures à 1 jours	Orages, tornades, formation des nuages convectifs, brouillard	Bulletins d'avertissement, bulletin d'alerte (Warning)	Imagerie satellitaire, Profil verical, Radiosondage, Humidité Relative, températures, pression atmosphérique, vents, OLR	
	Prévision à courte échéance (Journalière)	12 h à 05 jours	-Méso échelle -Echelle synoptique	100 à 1000 km	1 à 3 jours	Lignes de grains, ondes d'Est, brume sèche, aérosols	Bulletins d'avis (Advisory)	Pression, températures, vents, Profil verical, Humidité Relative, CAPE, PWAT, OLR	
	Prévision à moyenne échéance (Journalière)	03 à 10 jours	Echelle synoptique	100 à 1000 km	Quelques jours (03 à 10 jours)	Brume sèche, ligne de grains, ondes d'Est et équatoriales, cyclone, anticyclone, aérosols	Bulletins d'avis (Advisory)	Pression, températures, vents, Profil verical, Humidité Relative, CAPE, PWAT, OLR	
	Prévision à échéance prolongée (intra- saisonnière)	10 à 30 Jrs	Echelle synoptique	100 à 1000 km	Quelques jours à 30 jours	Vents régionaux (Jets, mousson, harmattan), les centres d'actions (Anticyclones et dépressions) et les ondes équatoriales	Bulletins de veille (Watch)	Pression, températures, vents, géopotentiel,	
	Prévision à longue échéance	1 à 6 mois 6 mois à 2	Echelle planétaire	Au-delà de 1000 km	Du mois à l'année	Jets, Ondes équatoriales, alternance de saisons	Bulletins de tendance (Outlooks)	Pression, températures, vents, géopotentiel	
	(saisonnière) Prévision climatique	plus de 02 ans	Echelle planétaire	Au-delà de 1000 km	Du mois à l'année	Variabilité climatique	Bulletins de projection climatique	Pression, températures, vents, géopotentiel	

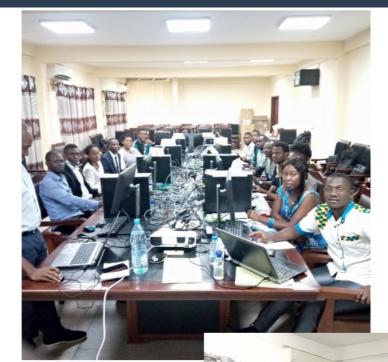
<10/15/25>

Products and Services



Dissémination





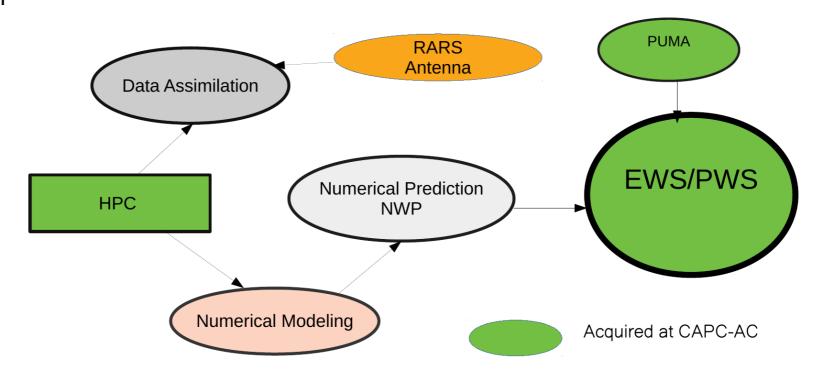
Ecoles Polytechniques du Cameroun et CAPC-AC



ECCAS/CAPC-AC situation room (UNDRR)

- Hazard Monitoring
- Coordinate early action
- Rapid mapping of affected areas
- Capacity building
- Training

Cas Congo Brazza: 26 novembre 2022



Equipements opérationnels: Financement ClimDev

En Première ligne de l'action climatique

CAPC-CREWS 25 / 28

Climate Application and Prediction Center

Overview of CAPC's Multirisk Early Warning Products

Pascal MOUDI IGRI, PhD

CAPC-AC

Early Warning Systems (EWS) and Disaster Operations Expert

Email: moudipascal@yahoo.fr ; igrimoudi@capc-ac.net

Tel : +237 655868308 Douala, Cameroun

Foreword

The CAPC-AC goes beyond traditional meteorology. It embraces an integrated risk management approach, centered on food security, public health, and climate resilience, with the aim of anticipating and reducing the impacts of disasters across the region.

To achieve these objectives, the CAPC-AC relies on the following pillars:

- Environmental modeling: Use of numerical models such as WRF to simulate atmospheric dynamics and anticipate extreme weather events.
- **High-resolution risk mapping:** Generation of dynamic maps using GIS tools (QGIS), integrating climatic, topographic, and socio-economic data to identify vulnerable areas.
- Multi-source and multi-model analysis: Integration of forecast outputs (WRF and other models) with satellite monitoring products (CM-SAF, LSA-SAF) to refine diagnostics and improve risk assessments.
- Agricultural drought monitoring: Use of vegetation indices, rainfall anomalies, and SAF products to anticipate water deficits and assess their impacts on crop production.

Foreword

- Advisories and monitoring product generation: Development of operational tools to support risk reduction and informed decision-making.
- Support for anticipatory action and rapid response: Contribution to early action mechanisms aimed at minimizing disaster impacts before they occur.
- Regional coordination and information sharing: Networking of national and regional stakeholders to ensure a coherent and effective response.
- Climate-based disease surveillance: Analysis of meteorological and environmental conditions (temperature, humidity, rainfall, vegetation, and water bodies) that influence the emergence, transmission, and spread of climate-sensitive diseases such as malaria, dengue, cholera, and meningitis, in order to support early warning, prevention, and public-health preparedness strategies

Foreword

Through this multidimensional and integrated approach, the **CAPC-AC** deploys a range of technical products tailored to the operational needs of the region.

These tools, derived from environmental modeling, satellite analysis, and multi-model forecasting, enable rigorous monitoring of climatic, health-related, and environmental risks.

The following section provides a detailed overview of the main products developed, their methodological foundations, and their strategic relevance in the context of risk reduction and anticipatory action.

Multirisk Monitoring Products

Capc-ac.net

Summary of Multi-Risk Monitoring Products

Product / Tool	Objective & Variables	Spatial / Temporal Resolution	Application	
Regional Downscaling & Forecasts	WRF-based rainfall, wind, humidity, soil-moisture simulations	8 km daily / 10-day / monthly runs	Operational meteorological forecasts	
Heavy Rainfall Advisories	RAIN_SUM (RAINC + RAINNC)	8 km daily	IBF (Flood forecasting and warning)	
Multi-Hazard Outlook & Early Action Maps	Rainfall (RAIN_SUM), runoff (SFROFF/UDROFF), soil moisture (SMOIS), wind (U10, V10), Height (HGT)	8 km daily	Multi-risk early-warning dashboards	
Dry-Wet Spell Monitoring	Rainfall duration and frequency	Rainfall duration and frequency 8 km daily		
Hot–Cold Spell Analysis	Mean Temperature (T2m)	(T2m) 8 km daily		
Convection Risk Maps	Potential Temperature, wind (ua, va), vorticity, omega	8 km daily	Severe storm potential	
Mid-Atmosphere Dry-Air Intrusion	RH < 40 %, Qvapor < 1.5 g kg ⁻¹	8 km daily	Forecast of storm suppression / fire risk	
Multi-Model Seasonal Rainfall Forecasts	C3S ensemble (08 models)	1° monthly / seasonal	Seasonal climate outlooks	
Onset–Retreat Monitoring	Rainfall thresholds (≥ 100 mm in 7 days) and dry-spell indices	1° decadal / seasonal	Agricultural calendar & drought-risk management	
Composite Drought Index (CDI-A)	Weighted DHI (35 %), Precipitation (20 %), Evapotranspiration (20 %), LAI (15 %), Sunshine (10 %)	3–5 km monthly	Agricultural drought early warning	
Health / Malaria Advisories	Temperature + Humidity + Land-use	8 km daily	Predictive mapping of malaria-risk zones	
	Salle de Veille	REWS CLIMATE BISK & EARLY WARNING SYSTEMS	NDRR WORLD METEOROLOGICAL 6	

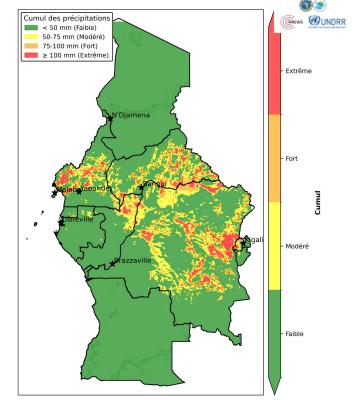
UN Office for Disaster Risk Reduction

Regional Downscaling Simulations

CAPC's forecast relies on tools, models in particular, adapted models tailor to the region which are runned locally to prevent us from relying primarily on global forecast data that comes from international centers.

- We use the **WRF** model to make weather forecasts at different temporal scales using different input datas such as **ECMWF**, **GFS**, **CFSv2** ,...
- We usually run :
 - → 10-days simulations for short-range weather forecasts
 - → One month-simulations for long-range weather forecasts
- Those simulations are runned on a 8km-grid over the ECCAS domain and require high computational capabilities.

Regional Heavy Rainfall Advisories


→ Variables:

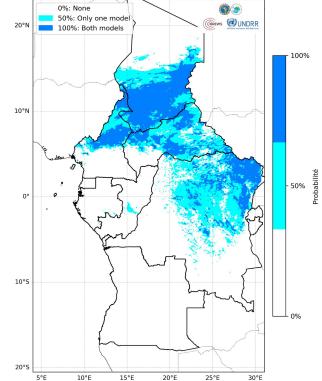
◆ WRF Output Variables : **RAIN_SUM** (RAINC + RAINNC)

→ Resolution

- lack spatial: 8 km x 8 km
- ◆ Temporal: daily

Carte de vigilance du 2025-10-01 au 2025-10-05

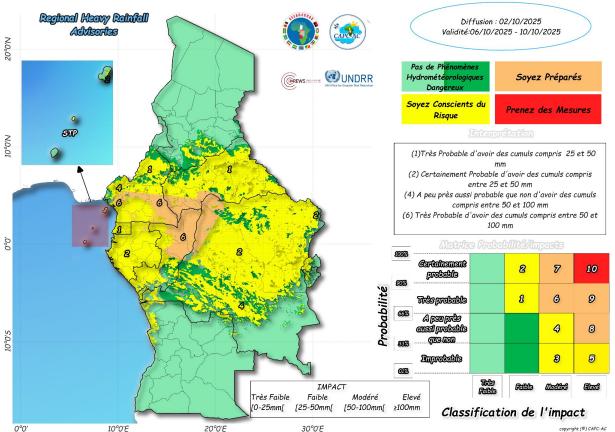
Regional Heavy Rainfall Advisories

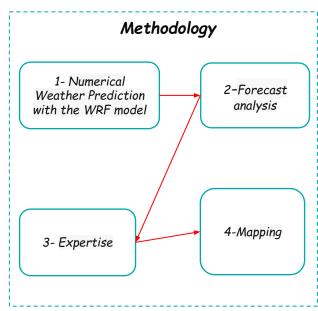

→ Variables:

◆ WRF Output Variables : **RAIN_SUM** (RAINC + RAINNC)

Resolution

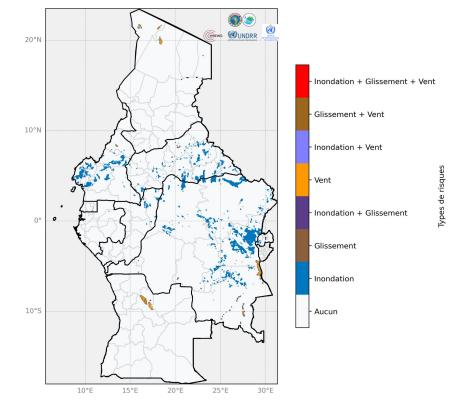
- ◆ spatial: 8 km x 8 km
- ♦ Temporal: daily, weekly





Regional Heavy Rainfall Advisories

Multi-Hazard Outlook and Early Action

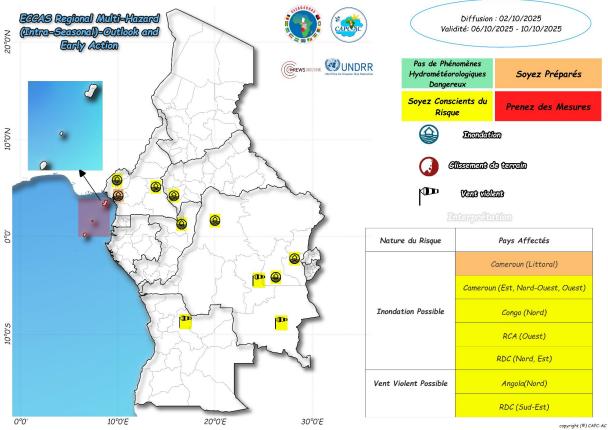

→ Variables:

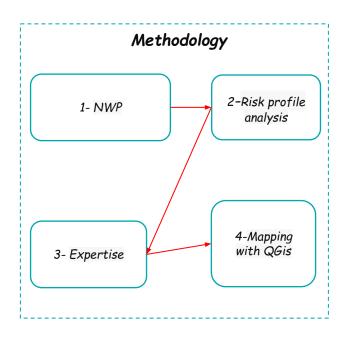
 ◆ WRF Output Variables : Rainfall, HGT, SFROFF, UDROFF, U10, V10, SMOIS, ISLTYP

→ Resolution

- ◆ spatial: 8 km x 8 km
- ♦ Temporal: daily

Carte multirisque glissante - 2025-10-01 au 2025-10-05 (Cumul 5 jours)





Multi-Hazard Outlook and Early Action

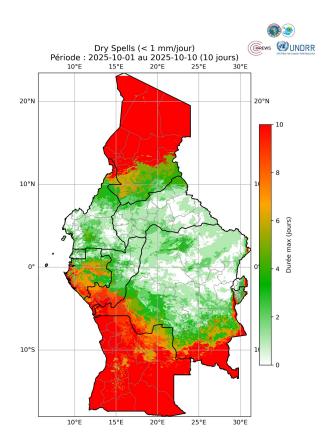
Spells indices

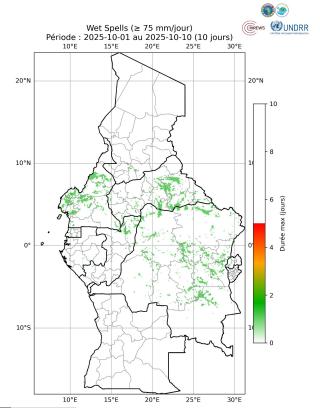
→ Variables:

♦ WRF Output Variables : Rainfall, T2m

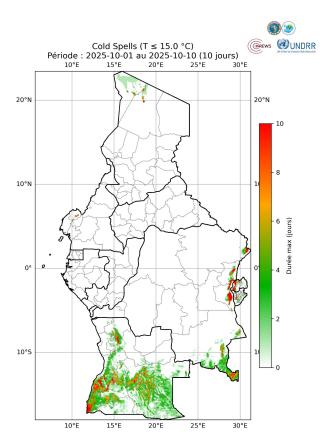
→ Resolution

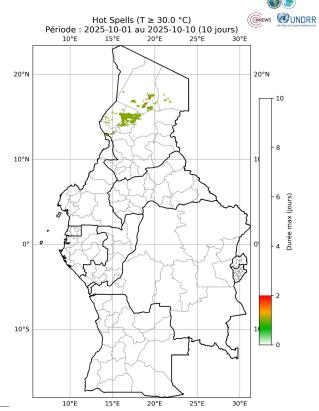
- ♦ spatial: 8 km x 8 km
- ◆ Temporal: daily



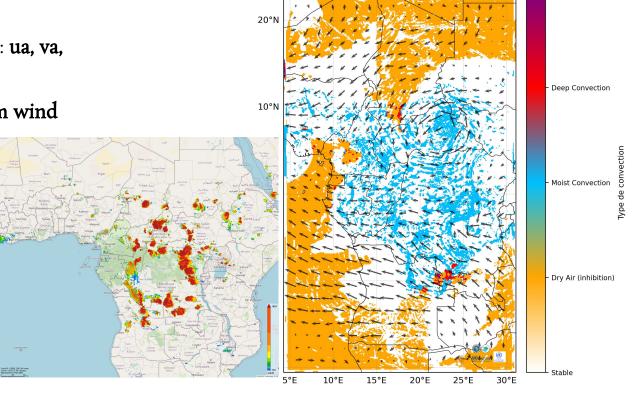


Dry-Wet Spells





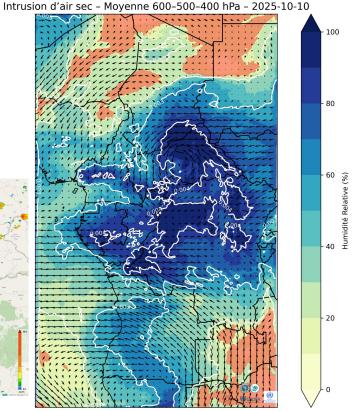
Hot-Cold Spells



Convection Risk

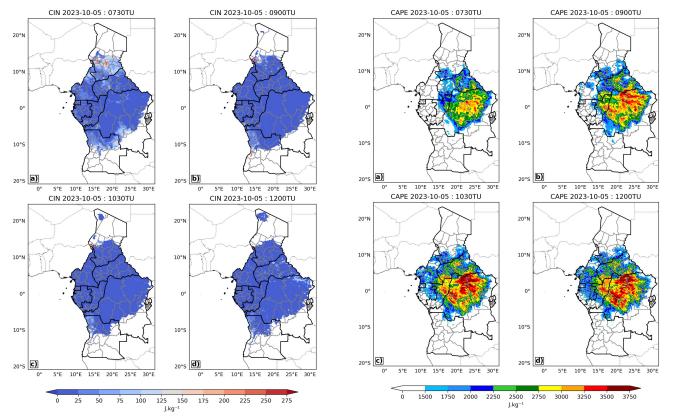
- → Variables:
 - WRF Output Variables : ua, va, omega, theta_e, rh
 - ♦ Vorticity is derived from wind
- → Resolution
 - ♦ spatial: 8 km x 8 km
 - ◆ Temporal: daily

Risgue convectif (700-500 hPa) + Rotation - 2025-10-09

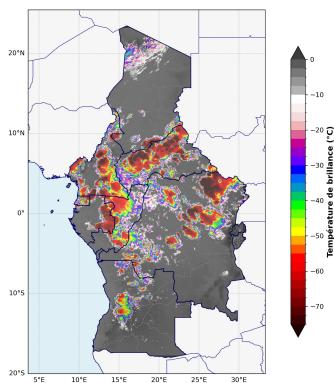

Deep + Rotation

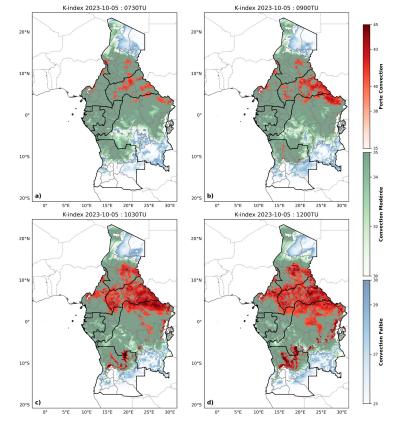
Mid-Atmosphere Dry air Intrusion

- → Variables:
 - RH, QVAPOR,Wind
- → Yellow to Red areas represent Dry air where RH<40% and Qvapor< 1.0 g/kg
- → Resolution
 - spatial: 8 km x 8 km
 - ◆ Temporal: daily



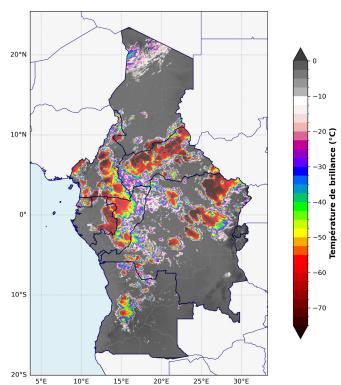
Convection analysis based on WRF Outputs

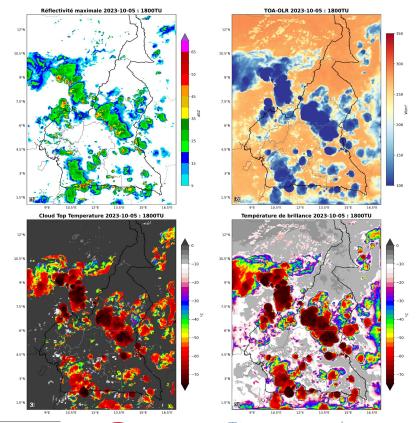




Convection analysis based on WRF Outputs

Canal IR10.8 - Température de brillance 05/10/2023 à 1800TU



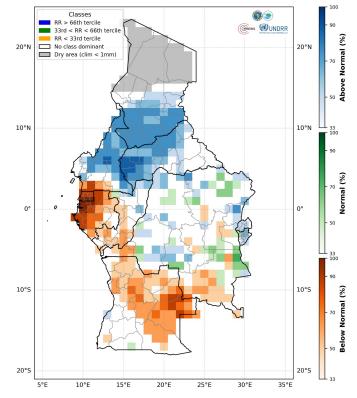


Convection analysis based on WRF Outputs

Canal IR10.8 - Température de brillance 05/10/2023 à 1800TU

Multi-Model Rainfall Seasonal Forecasts

→ Inputs:


- Precipitation data from Copernicus C3S
 Database
- Hindcasts and Forecasts of 8 models: BOM, CMCC, DWD, ECCC, ECMWF, Météo-France, NCEP, UKMO.
- → Initialisation : Each Month

→ Resolution

- ♦ spatial: 1.0°x 1.0°
- ◆ Temporal: decadal, monthly, seaso<u>nal</u>

Multi-Model Rainfall Probability Valid Period: October 2025

Onset-Retreat Trends

Onset-Retreat Periods

Objective:

Identify the onset and retreat dates of the rainy season in the ECCAS region in order to anticipate risks associated with seasonal variability: agricultural drought, excessive rainfall, health impacts.

- Methodological approach:
- Climate models used: bom, cmcc, dwd, eccc, ecmwf, meteo_france, ncep, ukmo;

Analysis parameters:

<u>Onset</u>

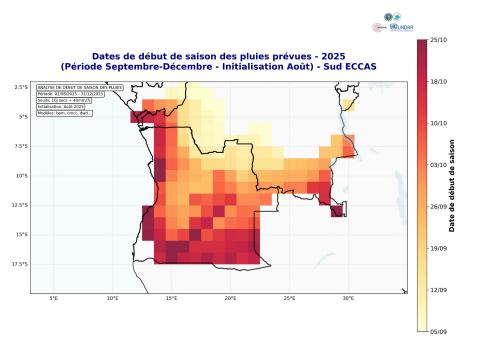
Minimum dry period: ≥ 10 days

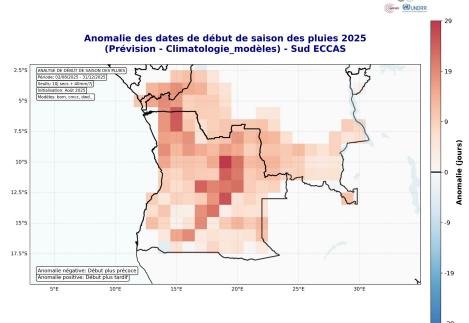
Post-onset rainfall threshold: ≥ 100 mm over 7 days

Retreat

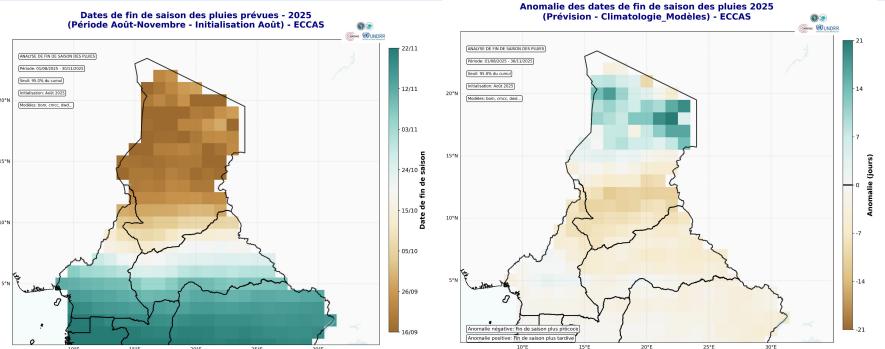
Withdrawal threshold: Drought index \geq 0.95

Minimum duration of dry conditions: ≥ 10 consecutive days





Onset-Retreat Periods



Onset-Retreat Periods

Regional Monitoring Agricultural

Drought: Composite Drought Index - CDI

Overview

The **CDI-A** is a composite agricultural drought indicator that incorporates multiple environmental variables to provide a comprehensive assessment of agricultural drought conditions.

Main Objectives

- Early detection of agricultural drought conditions;
- Continuous monitoring of agricultural drought developments;
- Map production for decision-making;
- Support for early warnings for the ECCAS region.

The Problem of Agricultural Drought

The **ECCAS** (**Economic Community of Central African States**) region is facing increasing climate variability, with drought events having significant impacts on food security, water resources, and ecosystems.

The **CDI** was developed to provide an integrated tool for monitoring and early warning of agricultural drought, combining multiple environmental indicators in a holistic approach.

CDI Model Architecture

Variable	Product/Source	Acronym	Weight	Spatial/Temporal Resolution	Scientific Justification
Water Deficit	LSASAF MSG	DHI	35%	3–5 km, monthly average	Direct indicator of soil moisture
Precipitation	NASA IMERG	Р	20%	0.1°, monthly	Main input to the hydrological system
Evapotranspiration Ratio	LSASAF MSG	EVAP	20%	3–5 km, monthly sum	Water stress on vegetation
Leaf Area Index	LSASAF MSG-LAI	LAI	15%	3–5 km, monthly average	State of the vegetation cover
Sunshine Duration	LSASAF SDU	SUN	10%	3–5 km, monthly sum	Radiative and energetic forcing

Methodology

Data Preprocessing

• Winsorization

Objective: Reduce the influence of extreme values

- Parameters:
 - Lower limit: 2.5th percentile
 - Upper limit: 97.5th percentile

Advantage: Increased statistical robustness

Normalization

Z_score = (Current_value - Climatological_mean) / Climatological_standard_deviation

Calculation of the EVAP Ratio

EVAP = ETP / ETA (Water demand/satisfaction ratio)

Calculation Methodology

Aggregation and Combination

• Weighted Linear Combination

Application of specific weights to each normalized variable.

• Final Normalization

Adjustment of the CDI scale for standardized interpretation.

Generated Products

• Agricultural Drought

Final CDI: Normalized composite index

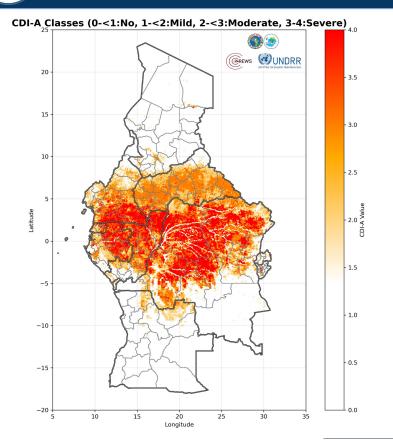
• Drought classes:

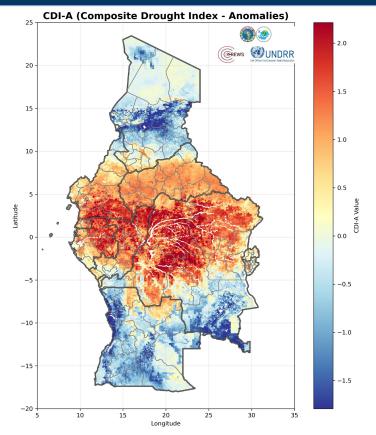
o **False** (Abnormally Dry): CDI > 0.0;

o **Mild**: CDI > 0.5;

o **Moderate**: CDI > 1.0;

• **Severe**: CDI > 1.5





gro-climatic Monitoring Map – Drought September 2025

Multi-Variable Climate Monitoring and Applications

Innovations

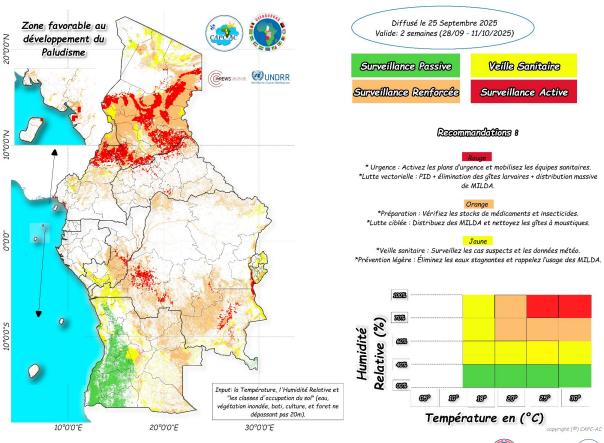
- Multi-variable approach for a holistic view;
- Regularly updated dynamic climatology;
- Robust method for managing missing data;
- Adaptability to different areas of the sub-region;

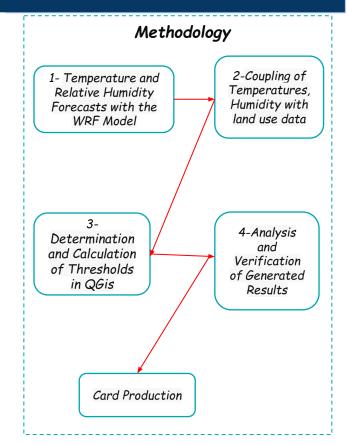
Applications

- Early warnings for food security;
- Water resource planning;
- Agricultural and pastoral monitoring;
- Decision support for governments;

Malaria Advisories

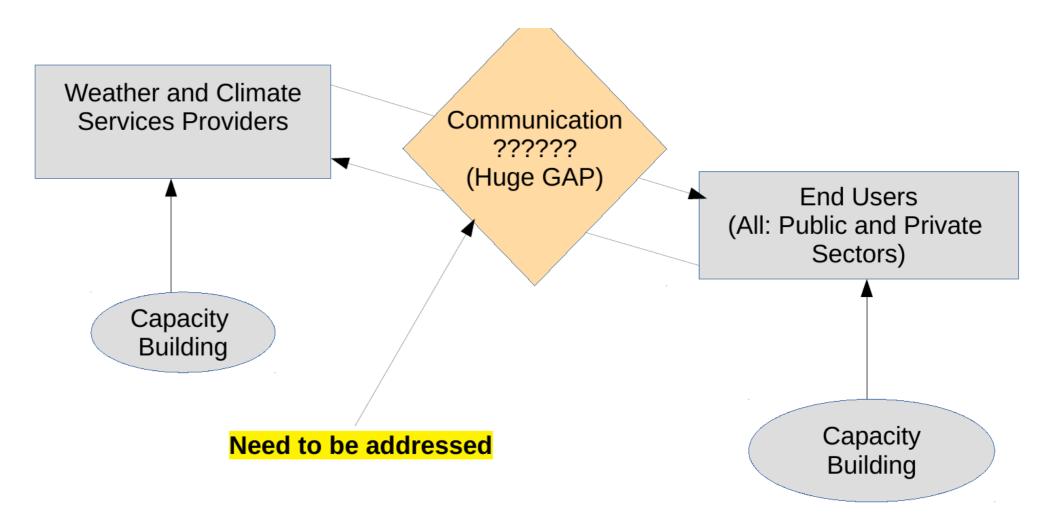
Malaria is a parasitic disease transmitted by Anopheles mosquitoes. Its prevention involves Digital Surveillance, which entails the use of digital and geospatial technologies to collect, analyze, and disseminate epidemiological data in real time.



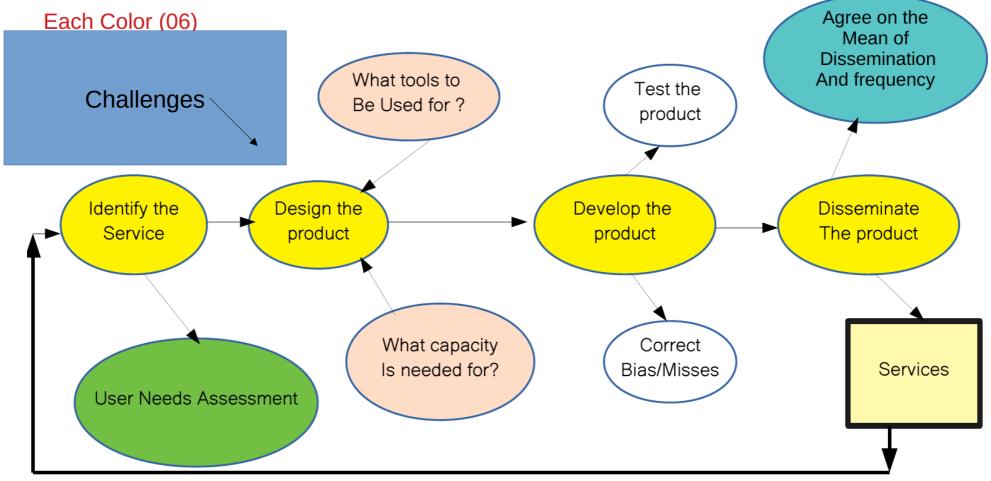


Health Advisories

Final remarks



Gaps et Défis



canc-ac.net CAPC-CREWS 26 / 28

Gaps et Défis

Feedback from users to producer

Key Challenges Facing CAPC-AC

Category	Main Challenges
1. Technical & Infrastructure	 Dependence on external project funding for HPC maintenance and operational continuity. Limited integration of in-situ data for model validation. Lack of stable institutional budget for regular forecast production and dissemination.
2. Early Warning System (EWS)	 Disparities in technical capacity and data standards among NMHSs. Difficulty harmonizing thresholds and alert protocols across the region. Weak integration of anticipatory action mechanisms into national DRM systems.
3. Human & Institutional Capacity	 Shortage of qualified specialists and high staff turnover. Uneven access to training and digital infrastructure among countries. Institutional fragility and dependency on external technical assistance.
4. Partnerships & Finance	 Fragmented and short-term project funding. Lack of long-term financial mechanism for sustainability. Limited engagement of the private sector in climate services.
5. Coordination & Governance	 Overlapping mandates between regional and national institutions. Absence of harmonized data-sharing and warning policies. Weak political ownership of regional early-warning frameworks.
6. Communication & Visibility	 Low visibility of CAPC-AC's operational products and achievements. Weak connection with end users and decision-makers. Insufficient tools and resources for public engagement and outreach.

CAPC-CREWS 28 / 28

Major Needs of CAPC-AC

Category	Key Needs
1. Technical & Infrastructure	 Strengthen High-Performance Computing (HPC) capacity for high-resolution WRF modeling (Convection permitting). Modernize observation networks (automatic stations, radars, IoT sensors) in Member States. Deploy integrated data visualization and automation systems (Python/QGIS, web platforms).
2. Early Warning System (EWS)	 Fully implement the EW4ALL framework in synergy with the SEWA Project (Space for Early Warning in Africa). Ensure interoperability between regional and national warning systems. Define and operationalize forecast-based triggers for anticipatory action.
3. Human & Institutional Capacity	 Recruit and train experts in NWP, climate modeling, hydrology, GIS, data science, and communication. Establish a regional pool of trainers to support ECCAS Member States. Strengthen institutional framework to achieve WMO RCC accreditation.
4. Partnerships & Finance	 Create a regional contingency and sustainability fund for early action and system maintenance. Mobilize resources from donors. Deepen collaboration with Technical Partners and GPC.
5. Coordination & Governance	 Clarify institutional coordination mechanisms among ECCAS bodies (CAPC-AC, CICOS, CBLT, ALG). Develop a legal framework for data sharing and warning dissemination. Strengthen multi-sectoral governance for integrated early warning.
6. Communication & Visibility	 Develop a multilingual, open-access regional portal for real-time multi-hazard monitoring. Promote the added value of CAPC-AC products to policymakers and technical partners. Disseminate knowledge through training, outreach, and scientific publications.

CAPC-CREWS 29 / 28

Analytical & Methodological Strengths

- Robust modelling chain: WRF-QGIS-Python workflow, validated against observations.
- Composite indicators: Integration of multiple biophysical variables (rainfall, soil moisture, vegetation, radiation).
- Standardized classes and thresholds: ("Abnormally dry", "Mild", "Moderate", "Severe") for drought; rainfall-trigger thresholds for flood alerts.
- **Dynamic visualization:** Automated map production in QGIS with web-based dissemination (portal, email, SMS, WhatsApp).

Innovation & Added Value

- **Regional ownership:** Models run locally at CAPC-AC (HPC environment), reducing dependence on external centers.
- Interdisciplinary scope: Bridges meteorology, hydrology, agriculture, and public health.
- Operational relevance: Directly supports anticipatory action and decision-making within ECCAS, UNDRR, and national civil-protection systems.
- Replicability: Methodologies adaptable to other African regional climate centers (RCCs).

Key Messages

- **CAPC** represents a **shift from forecasting to action**, linking scientific outputs to early decisions.
- Its **portfolio of 10+ operational products** covers the full hazard spectrum, from daily forecasts to seasonal risk outlooks.
- **Interoperability and co-production** with Member States are central to sustainability and regional integration.
- The approach positions CAPC-AC as both a technical hub and a policy enabler within the Early Warning for All (EW4All) and AMHEWAS frameworks.

Final Words

Anticipatory action allows humanitarian interventions ahead of a disaster

It requires dedicated finance that is released when forecasts meet pre-agreed triggers

Early warning and early action saves lives, protects livelihoods, and preserves dignity

Source: UN OCHA & UNDRR, 2024

Anticipatory action is a smart way to provide humanitarian assistance ahead of a disaster, by putting in place pre-arranged finance and plans that are activated by pre-agreed triggers based on forecasts.

Final Words

Within the framework of the EW4ALL initiative, the SEWA Project (Space for Early Warning in Africa) provides a foundation for strengthening anticipatory action across the continent.

By leveraging space-based observations, satellite data, and regional modeling systems, SEWA enhances the availability and accuracy of early warning information that can trigger forecast-based, pre-arranged humanitarian actions.

Through this integration, SEWA acts as a **data and technology enabler**, ensuring that early warnings generated from space-derived products are seamlessly translated into **anticipatory measures**, reducing disaster impacts and improving preparedness across the ECCAS region.

Merci!!!

Thanks !!!

Obrigado !!!

Pascal MOUDI IGRI, PhD

CAPC-AC

Capc-ac.net

Early Warning Systems (EWS) and Disaster Operations Expert Email: moudipascal@yahoo.fr; igrimoudi@capc-ac.net

Tel : +237 655868308 Douala, Cameroun

