
Loki: Freely Programmable Source-to-
Source Translation for IFS and beyond
Balthasar Reuter, Ahmad Nawab, Michael Staneker,
Johan Ericsson, Michael Lange
Ñ Research Department, ECMWF, Bonn (Germany) # {firstname}.{lastname}@ecmwf.int

Motivation

Perfomance portability of Numerical Weather Prediction (NWP)
codes across a broad range of HPC architectures, including
accelerators (such as GPUs), from a single code base

Static code analysis/linting of source code to aid development

Challenges

Different programming paradigms and environments

Hardware-specific optimisation (loop order, memory layout, ...)

Handling a large and complex Fortran code base

Compatibility with operational requirements and scientific changes

Methodology

Source-to-source (S2S) translation tool to inspect/transform code:
Static code analysis using internal representation

Build-time transformation of source code using bespoke recipes

Open development on Github

Source code & bug tracker

§/ecmwf-ifs/loki

Documentation

sites.ecmwf.int/docs/loki

Jupyter Notebook Tutorials

§/ecmwf-ifs/loki/tree/
main/example

Loki: overview and internal representation

Loki is a Python package to encode S2S translation recipes for Fortran

Core library: Internal representation (IR) and API to encode
custom transformations or analysis/linting pipelines

Fparser21 is used to generate parse tree of Fortran source
The parse tree is converted into Loki’s two-level IR, separating
(Fortran-tinted) control-flow from expression tree

Features:
Visitors are used to traverse and transform the IR
Scope-aware symbol tables manage type information
Scheduler builds a dependency graph for call trees across
source files and allows for inter-procedural analysis
Backends to generate Fortran (experimental: C, Python, or CUDA-Fortran)

Sourcefile
Module

Subroutine

Subroutine
...

Subroutine
spec body

Section

Conditional

condition body

Intrinsic

Loop

variable bounds body

Assignment

lhs

TMP

rhs

Product

A X

dimensions

I

Assignment

lhs

Y

dimensions

I

rhs

Sum

Y

dimensions

I

TMP

FindNodes(Assignment).visit(routine.body)

?

?

?

?

?

?

! !

SUBROUTINE AXPY (N, A, X, Y)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

REAL, INTENT(IN) :: A, X(:)

REAL, INTENT(INOUT) :: Y(:)

INTEGER :: I

REAL :: TMP

IF (A == 0.0) RETURN

DO I=1,N

TMP = A * X(I)

Y(I) = Y(I) + TMP

END DO

END SUBROUTINE AXPY

Bulk transformation and analysis of source code

Typical S2S translation recipes consist of
multiple bespoke transformation steps
User-defined pipeline of transformation
steps can be built using core library utilities
Scheduler applies transformations in the
order of the dependency graph
CMake integration automatically updates
dependencies of build system targets
Same infrastructure unlocks custom static
code analysis and experimental fixing of coding rule violations

CONTROL

LAYER_A

A

LAYER_B

B

glob(**/*.F90)

USER-DEFINED TRANSFORMATION SCRIPT

Parse
file tree

Transformations

A → B → C → ·· Write files

Frontends IR Visitors Transformation/Linter
utilities

... Backends

LO
K

I

USER-DEFINED LINTING RULES

Parse files/
file tree

Rules

1 2 3 4 ··
Fix Write files

Write report

CONTROL

LAYER_A

A

LAYER_B

B

Architecture-specific recipes to generate bespoke optimisations

IFS model components with open-source
mini-apps serve as proxies for full-model
algorithms to develop transformation recipes

§/ecmwf-ifs/
ecwam

ecWAM is the operational IFS
wave model, consisting of wave
propagation and physics

GPU adaptation recipes are composed from
multiple transformations, e.g., swapping
horizontal/vertical loop for additional parallelism,
inlining, or handling of temporaries

Multiple programming model backends improve
portability across vendors, e.g., OpenACC and
OpenMP for NVIDIA and AMD GPUs

Comparison of average wall time in double (DP) and single precision (SP) for ecWAM execution on (a) a single
node of ECMWF’s Atos HPCF, (b) a single node of ECMWF’s AC GPU nodes (4x NVIDIA A100 GPUs), (c) a single
node of EuroHPC’s JUPITER supercomputer (4x NVIDIA GH200), and (d) a single node of the EuroHPC LUMI-G
supercomputer (8x AMD MI250X)

The work presented in this poster has been produced in the context of the European Union’s Destination Earth Initiative and relates to tasks entrusted by
the European Union to the European Centre for Medium-Range Weather Forecasts implementing part of this Initiative with funding by the European Union.

https://github.com/ecmwf-ifs/loki
https://github.com/ecmwf-ifs/loki
https://sites.ecmwf.int/docs/loki/
https://sites.ecmwf.int/docs/loki
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/ecwam
https://github.com/ecmwf-ifs/ecwam
https://github.com/ecmwf-ifs/ecwam

