1. Introduction and aim

- **Background:** Fill the "predictability gap" between weather and climate predictions. Subseasonal to Seasonal (S2S) prediction project: 11 climate models (Vitart et al. 2017).
- **Motivation:** A comparative global precipitation hindcast quality assessment, exploring the common virtues and deficiencies in the subseasonal prediction range of all S2S models, is still undocumented.
- **Aim:** Perform an assessment of subseasonal global precipitation hindcast of all 11 S2S models and evaluate possible connections with the atmospheric circulation hindcast quality (Andrade et al. 2018).

2. Data and methods

- **Data:** hindcasts from 11 S2S models; observed precipitation from GPCP version 1.2; 200 hPa wind components provided by the ERA-Interim reanalysis (used for obtaining zonally asymmetric stream function - ZAPSI); OISST v2 and OLR dataset sourced by NOAA.
- **Methods:**
 1. Deterministic metrics using different ensemble sizes (correlation, bias, variance ratio).
 3. Anomalies computed in a cross-validated way leaving one year out.
 4. Sources of subseasonal predictability: Impact of ENSO and MJO on subseasonal precipitation prediction. Linear regression analysis using ENSO and MJO indices (Niño-3.4 and RMM).

3. Linear association assessment

[Correlation: Hindcasts vs GPCP anomalies (November-March)]

[Regression: GPCP anomalies vs Indices (ENSO and MJO) (November-March)]

[Correlation: Hindcasts vs GPCP anomalies after removing ENSO and MJO-related variability]

4. Model’s ranking

[Zonal average of correlation: Hindcasts vs GPCP anomalies (November-March) 205-20N Ensemble mean all members]

[Ensemble mean 3 members]

5. Systematic errors

[Bias: Hindcasts vs GPCP totals (November-March)]

[Correlation: Hindcasts vs ERA Interim anomalous (November-March) – 200 hPa ZAPSI]

[Bias: Hindcasts vs ERA Interim totals (November-March) – 200 hPa ZAPSI]

6. Connections with the atmospheric circulation

7. Summary

- Weeks 1-2: Higher correlation. Meaningful scores over tropics. ENSO and MJO-related effects.
- Top scoring models: ECMWF, UKMO, and KMA. Models with larger ensemble sizes: lower correlation using fewer perturbed members.
- Large positive (negative) biases over the tropical oceans (continents and/or extratropics).
- Atmospheric circulation hindcast: better quality using finer spatial resolution and coupled model.
- Low extratropical correlation in weeks 3-4: inherent unpredictability and deficiencies in simulating teleconnections.

References

Andrade F. M. de; Coelho C. A.; Cavalcanti, I. F. A., (2018) Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models. Climate Dynamics

Acknowledgements

The first author was supported by FAPERJ (2016/01835-5). We thank NCAR and NOAA for making available the dataset used in this study, and ECMWF for developing and hosting the S2S project database extensively used in this research.